Graph of f' using graphical methods

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Graph
Click For Summary
SUMMARY

The discussion centers on the graphical representation of the derivative function f' in relation to the original function f. Participants debate the accuracy of an altered graph of f', particularly regarding the steepness of the added sections and the end behavior of the graph. It is concluded that f resembles a 4th order polynomial while f' behaves like a 3rd order polynomial, with the book's answer being preferred due to its more accurate depiction of the slopes and inflection points. The importance of understanding how gradients affect the tangents of f is emphasized, particularly near the endpoints.

PREREQUISITES
  • Understanding of polynomial functions, specifically 4th and 3rd order equations.
  • Familiarity with graphical methods for estimating derivatives.
  • Knowledge of asymptotic behavior in calculus.
  • Basic concepts of trigonometric functions and their derivatives.
NEXT STEPS
  • Study the properties of 4th order polynomial functions and their derivatives.
  • Learn how to accurately estimate derivatives using graphical methods, such as tracing and straight-edge techniques.
  • Explore asymptotic behavior of functions and how it affects their derivatives.
  • Investigate the characteristics of trigonometric functions and their derivatives, focusing on cosine functions.
USEFUL FOR

Students studying calculus, particularly those focusing on derivatives and graphical analysis, as well as educators seeking to clarify concepts related to polynomial functions and their behaviors.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this Problem 5,
1682903343264.png

The solution is,
1682903366977.png

However, I though the graph of f' would have end behavior more like,
1682903523058.png

Does someone please know whether I am correct?

Many thanks!
 

Attachments

  • 1682903312357.png
    1682903312357.png
    3.8 KB · Views: 133
Last edited by a moderator:
Physics news on Phys.org
ChiralSuperfields said:
Dose
 
  • Like
Likes   Reactions: member 731016
Thank you @Mark44, I have fixed the description now.
 
ChiralSuperfields said:
Does someone please know whether I am correct?
I don't think you are correct. Why did you change the graph of f with the red dotted lines that are close to vertical?

In your altered graph of f', the parts you added look way too steep to me.
 
  • Like
Likes   Reactions: member 731016
Mark44 said:
I don't think you are correct. Why did you change the graph of f with the red dotted lines that are close to vertical?

In your altered graph of f', the parts you added look way too steep to me.
Thank you for your reply @Mark44!

Do you please agree with the solutions then?

Many thanks!
 
ChiralSuperfields said:
Do you please agree with the solutions then?
Yes, pretty much. You could confirm that their graph of f' looks reasonable by tracing the graph of f on some graph paper, and then using a straight-edge at a number of points on the graph to estimate the derivative, and then plotting each of these estimates.
 
  • Like
Likes   Reactions: member 731016
f looks more like 4th order equation and f' looks like a 3rd order equation by counting the inflection points.

Your dotted line adds to more orders to change the direction of the asymptote of the derivative.

4. is a negative cosine function so that f' is easy to find.
 
  • Like
Likes   Reactions: member 731016
You can expect the graph of the function to keep having more and more slopes at the extremes (negative on the left and positive on the right. Both the book answer and your answer have f' going more negative for negative x and more positive for positive x. So the next question is whether the slopes of f(x) change faster at the extremes. That is where I think the book answer is better. Notice that for x going more negative, the function has less curve and becomes straighter. That means that f' is not changing as fast (it is still becoming more negative, just slower). Likewise, on the right end, as x goes more positive, the function graph also becomes straighter. It is still sloped positively, and more positively as x gets larger, but the change is not as fast. That means that on the right side, f' keeps increasing positive, but not as fast as x gets larger.
That is why I prefer the book answer.
 
  • Like
Likes   Reactions: member 731016
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this Problem 5,
View attachment 325718
The solution is,
View attachment 325719
However, I though the graph of f' would have end behavior more like,
View attachment 325720
Does someone please know whether I am correct?

Many thanks!

One thing that may be helpful to ponder is how the gradient, ##m##, affects the line ##y=mx##. When ##m=1## the line will be on a ##45°## angle. However, when the gradient is doubled to ##m=2##, the angle does not double with it to ##90°##, rather the angle changes to ##63°##. When ##m=3##, the angle is ##72°##. Why does this matter? Well in the graph of ##f## we are examining the gradient of the tangents, and near the endpoints of ##f## these tangent lines are becoming closer and closer to being on the same angle. Because there is less and less increase of the gradient, the function value of ##f'## which represents the gradient, is also having less and less increase. Hence why ##f'## is flattening out.
 
  • Like
Likes   Reactions: member 731016
  • #10
TonyStewart said:
f looks more like 4th order equation and f' looks like a 3rd order equation by counting the inflection points.

Your dotted line adds to more orders to change the direction of the asymptote of the derivative.

4. is a negative cosine function so that f' is easy to find.
Furthermore in 5. (to explain why you are incorrect)

To extend f you cannot add another change in slope rather assume it is approaching a asymptotic slope so the derivative f' approaches a constant -y on the left and constant =Y on the right.

on 4. it could be a partial trig function for 1 cycle or it could also be a 4th order or more polynominal with the same shape.
 
  • Like
Likes   Reactions: member 731016

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
32
Views
3K
  • · Replies 11 ·
Replies
11
Views
1K