Graduate Graph or lattice topology discretization

Click For Summary
The discussion revolves around modeling a lattice version of a smooth space, where every connected point maintains the same distance, challenging traditional lattice concepts. The user seeks to understand how to extract geometric information, such as dimensions and curvature, from this graph/lattice structure as it approaches a continuum space. There is a distinction made between geometric and topological data, with suggestions to explore discrete exterior calculus and simplicial complexes for meaningful insights. The concept of taxicab geometry is introduced as a potential method for approximating distances in the lattice. The user concludes with a commitment to further exploration of these mathematical concepts.
diegzumillo
Messages
180
Reaction score
20
Mathematicians, I summon thee to help me identify which field deals with this stuff. I come here not as a physicist but as a sunday programmer trying to solve some numerical problems.

I set out to model a lattice version of a smooth space. A discretization procedure not uncommon in physics, but there's a catch: every connected point has the same distance. Which essentially breaks everything I knew about lattices. So I'm not putting points on a plane (where each point would have its own coordinates) but making a plane out of points. So each point only has has information about its connectivity with its surroundings. This is closer to graph theory, I believe.

This smells a lot like topology, that's why I came here. Is there a way to retrieve information, like number of dimensions, or even geometrical aspects like curvature, in some limit where this graph/lattice tends to a continuum space? This limit would be an increase in number of points or something like that.
 
Mathematics news on Phys.org
Not an expert, but I don’t think graphs are appropriate structures for most topological or geometric problems. Graphs have only vertices and edges, whereas a triangulation of a topological or geometric space has k-simplices, where k<= the dimension of the space being considered.

I get the distinct impression that you are interested in geometric data and not topological data (that would be invariants like Betti numbers and homology groups and such). If you have a representation of a space as a simplicial complex, you could consider the discrete exterior calculus, but to extract meaningful geometric information I assume you’d some more geometric data, perhaps a metric which assigns edges to their respective distances.
 
Thanks for pointing to (discrete) exterior algebra. I will have to do some reading to see if that is the way but it's better than what I had before! (nothing)
 
  • Like
Likes suremarc
OK, I did some more reading. Exterior algebra is promising but I suspect the solution might be simpler. I found some more fancy words to describe what I was talking about. I learned the concept of taxicab geometry, where distance is defined as an absolute value from point to point. So maybe if I can tesselate a surface in a specific way where the taxicab distance in this lattice approximates the continuum version, that might work.

Anyway, just wanted to do a update/closure to this topic.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K