Graph theory (matchings/connectivity)

Click For Summary
The discussion focuses on challenges faced in a graph theory course, particularly regarding matchings and connectivity in specific graph scenarios. The first problem involves proving that a (2k + 1)-regular graph remains connected after removing fewer than 2k edges, leading to the conclusion that it has a perfect matching. The second problem requires demonstrating that in a simple graph with no isolated vertices and vertex degrees less than d, the size of the maximum matching is at least the number of vertices divided by (d + 1). The final problem pertains to a k-regular graph with certain conditions on odd cycles, suggesting a contradiction approach to prove the existence of a perfect matching. The student seeks guidance on these complex proofs before the upcoming deadline.
roadrunner
Messages
101
Reaction score
0
So my course is just getting further and further above my head. I got most of them but I'm stuck on these 3 and have no idea how to start them.

This is due friday so hopefully I can get input before that! :)




1) Let G be a (2k + 1)-regular graph, and assume that G - S is still connected
for any set S of edges with |S| < 2k. Prove that G has a perfect matching.


I know that there must be even number of vertices

I know that G-S means that every vertice is still guaranteed to have at least degree 2 (since it starts with degree 2k+1 and if all all of the edges is S were connected to a vertice then it will have 2k-1 less. )

But I don't know where to go from there or if that is even helpful?!


5) Let G be a simple graph with no isolated vertex. Assuming every vertex of G
has degree < d, show that a'(G) >= V (G)/(d + 1).

a' is the size of the maximum matching

12) Let G be a k-regular graph with an even number of vertices, and assume that
for any two odd cycles C1,C2 in G either V (C1) union V (C2) does not equal null ;, or there is an edge with one
end in V (C1) and the other in V (C2). Prove that G has a perfect matching. (Hint: suppose
for a contradiction that this is false, and choose a set X in V (G) of so that odd(G-X)>-|X|
is maximum and subject to this X is as large as possible, as in the proof of Tutte's theorem).
 
Physics news on Phys.org
SO i figured out 1)

just stuck on last 2 :(
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
11
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
14K