MHB Graphing Ellipses: How to Change Formats

veronica1999
Messages
61
Reaction score
0
How do I graph this ellipse?

It doesn't seem to be in the right form.

(x+2)^2 /5 + 2 (y-1)^2 = 1

I don't know what to do with the 2 in front of the (y-1)^2

Doesn't an ellipse have to be x^2/a^2 + y^2/b^2 = 1
 
Mathematics news on Phys.org
veronica1999 said:
How do I graph this ellipse?

It doesn't seem to be in the right form.

(x+2)^2 /5 + 2 (y-1)^2 = 1

I don't know what to do with the 2 in front of the (y-1)^2

Doesn't an ellipse have to be x^2/a^2 + y^2/b^2 = 1

Hi veronica1999, :)

Yes, an ellipse has its equation as, \(\displaystyle\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) if its major and minor axes coincides with the \(x\) and \(y\) axes of the Cartesian coordinate system. In this case the center point of the ellipse is at the origin. However a ellipse with its center point at, \((x_{0},y_{0})\) has an equation of the form,

\[\frac{(x-x_{0})^2}{a^2} + \frac{(y-y_{0})^2}{b^2} = 1\]

In your case the ellipse is centered at, \((-2,1)\). Now you should be able to draw your ellipse. :)

Kind Regards,
Sudharaka.
 
Thanks.
But I am still not sure what to do with the 2 in front of the (y-1)^2.
Could it have been a mistype meaning (y-1)^2/2 instead of 2(y-1)^2?
 
veronica1999 said:
Thanks.
But I am still not sure what to do with the 2 in front of the (y-1)^2.
Could it have been a mistype meaning (y-1)^2/2 instead of 2(y-1)^2?

Of course not. You can rearrange the equation by taking that \(2\) to the denominator like this,

\[\frac{(x+2)^2}{5} + \frac{(y-1)^2}{\frac{1}{2}} = 1\]

Is it clear to you now? :)
 
Yes!;)

Thank you!
 
veronica1999 said:
Yes!;)

Thank you!

You are welcome. I am glad to be of any help. :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top