Gravitation Potential Energy -- Questions about calculating the sign of GPE

Click For Summary
Gravitational potential energy (GPE) is context-dependent, with its sign determined by the chosen reference point for zero potential. When calculating changes in GPE, the formula mghf - mg0 indicates the signed change, while mgh0 - mghf shows the loss in potential energy. Generally, GPE is considered negative when using the convention that potential at infinity is zero. As an object rises, its GPE becomes less negative, indicating a positive change in energy. Understanding these principles clarifies the calculations and interpretations of gravitational potential energy.
Quantum Psi Inverted
Messages
7
Reaction score
1
Homework Statement
When does one use mgh0-mghf, and when does one use mghf-mg0? Is all gravitation potential energy necessarily negative?
Relevant Equations
E=(m/2)(vf^2-v0^2)+mg(hf-h0)
PE=mg(h0-hf)
I believe that this is due to context of application, but now, I'm starting to doubt myself. For example, a helicopter lifting itself has positive PE change. I really don't intuitively understand how this works. Can someone kindly explain this to me?
 
Physics news on Phys.org
Relative to the ground, GPE (gravitational potential energy) is always positive. A change in GPE can be positve or negative.
 
Quantum Psi Inverted said:
Homework Statement: When does one use mgh0-mghf, and when does one use mghf-mg0? Is all gravitation potential energy necessarily negative?
Those are two different questions.

Assuming the 0 and f are supposed to indicate initial and final heights, mghf-mg0 gives you the (signed) change in PE. mgh0-mghf gives you the loss in PE, obviously.

All "potentials" are in principle relative, i.e. it is up to you to choose where the zero potential is. However, a convention commonly used, both for GPE and electrostatic, is that the potential at infinity is zero. That makes all other GPEs negative.
At a greater height, the potential is less negative, so is greater than at a lower height.
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K
Replies
8
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K