For the equation:(adsbygoogle = window.adsbygoogle || []).push({});

[itex]U=\frac{-GMm}{h}[/itex]

Where [itex]h[/itex] is the distance between the center of masses [itex]M[/itex] and [itex]m[/itex].

In Calculus, they teach you derivatives.

The derivative of [itex]U[/itex] with respect to [itex]h[/itex] is:

[itex]dU=d\left(\frac{-GMm}{h}\right)[/itex]

[itex]dU=\frac{GMm}{h^2}[/itex]

Which is the gravitational force.

Were I to apply this knowledge to the pioneer anomaly, I would deduce that the gravitational potential energy would be equal to the integral of the force with respect to [itex]h[/itex]:

[itex]g_{pioneer}=8.74*10^{-10}\frac{m}{s^2}[/itex]

[itex]dU=\frac{GMm}{h^2}+mg_{pioneer}[/itex]

[itex]dU=d\left(\frac{-GMm}{h}+mg_{pioneer}h\right)[/itex]

[itex]U=\frac{-GMm}{h}+mg_{pioneer}h[/itex]

Are my premises true?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Gravitational Force, the derivative of Gravitational Potential Energy?

**Physics Forums | Science Articles, Homework Help, Discussion**