I Gravitational Redshift: Derivation from Static Metric

redtree
Messages
335
Reaction score
15
I am trying to find a derivation of gravitational redshift from a static metric that does not depend on the equivalence principle and is not a heuristic Newtonian derivation. Any suggestions?
 
Physics news on Phys.org
Solve for a null geodesic. Start one at ##(r,t_1)## and the other at ##(r,t_1+\Delta t)##. Determine the time between the events where the two geodesics cross some radius ##R##?
 
Ibix said:
Determine the time

More precisely, the proper time along a worldline of constant radius ##R## (the radius of reception), as compared with the proper time along a worldline of constant radius ##r## (the radius of emission).

Another method would be to compute the energy at infinity of a null geodesic, and then show how that relates to its energy as measured by static observers at ##r## and ##R##.
 
  • Like
Likes Ibix
Given that time and frequency are Fourier conjugates, how can changes in proper time relate directly to changes in frequency (as measured by redshift)? Or am I imposing a quantum perspective on a non-quantum theory?
 
redtree said:
Given that time and frequency are Fourier conjugates, how can changes in proper time relate directly to changes in frequency (as measured by redshift)? Or am I imposing a quantum perspective on a non-quantum theory?
You are.

To get the time dilation, all you need is the proper time between emission of successive peaks at the source and the proper time between the arrival of these peaks at the destination. The ratio between the two is the time dilation factor. You could do this calculation with two flashes of light emitted an hour apart at the source if you wanted.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top