Tomas Vencl said:
At the end of my post 36 I am talking about the scenario that dust collides (does not matter the details) and creates some static solid object (if the mass is big enough it can be neutron star - for this example).which pressure is in counterbalance with gravity forces.
Ah, ok. Note that this is not going to happen without an additional process happening--a significant amount of energy will have to be radiated away. If that does not happen, the dust will collide in a compact region and just bounce back out again, in the time reverse of the collapse process.
Tomas Vencl said:
And the last part of my question in post 36 is , if after creation such a "star" the observer see any gravity field chances.
We have to be very precise about the process, since, as I noted just now, you left out a key part of it. Here is a more precise description of the key phases of the process:
(1) The shell is falling inward but is still above the observer. During this phase the observer sees flat spacetime in his vicinity.
(2) The shell has fallen inward past the observer but has not yet gotten compact enough for any collision/radiation to happen. During this phase the observer sees curved spacetime in his vicinity, specifically the Schwarzschild metric with some mass ##M_0##.
(3) The shell has fallen into a compact enough region that "collision" is happening--the individual dust particles are now interacting with each other, producing pressure, shock waves, radiation, and all kinds of other fun stuff. However, none of this stuff has come back out to where the observer is. During this phase the spacetime geometry the observer sees is unchanged; it's still the Schwarzschild metric with some mass ##M_0##.
(4) A lot of radiation (we're idealizing--probably in a real process there would be outgoing matter--gas jets, gas clouds, etc.--but we're assuming that doesn't happen here, so that all of the matter that falls inward past the observer stays there) flies out past the observer and escapes to infinity. Once it all has passed and the object inside has settled down to its static final state, the observer sees a spacetime geometry in his vicinity which is still the Schwarzschild metric, but now with some smaller mass ##M_1##, i.e., ##M_1 < M_0##.
Now, having described the process, we can ask a key question: what is this "mass" that appears in the descriptions above? The point being that there are (at least) two ways of defining what this "mass" is:
First, we can define "mass" as the quantity ##M## that appears in the Schwarzschild metric. The observer can measure this quantity by simply measuring the spacetime geometry in his vicinity--for example, by measuring tidal gravity. He doesn't have to know anything at all about the internal structure of the object below him. (Note that in phases 2 and 3, we have very different internal structures, but the mass is the same, and the observer can know this without even knowing anything about how the internal structure is changing from phase 2 to phase 3.) Once this idea is made mathematically rigorous, it is called in GR the "Bondi mass". (A technical point for the cognoscenti: the reason I say "Bondi mass" here instead of "ADM mass", which is the more commonly mentioned version of this concept, is that the Bondi mass decreases when radiation escapes to infinity, whereas the ADM mass does not.)
Second, we can define "mass" as the product of some calculation that add up contributions from all relevant aspects of the object's internal structure to get a total. The way we do this is to integrate the stress-energy tensor over some relevant spacelike hypersurface, paying careful attention to the effect of spacetime curvature on the integration measure. The usual way of doing this, which when made mathematically rigorous is called the "Komar mass", requires the spacetime to be stationary, and our spacetime isn't--or, to put this another way, the Komar mass is only well-defined for a system for which it does not change (for technical reasons that we probably don't need to go into here), and any such integral for the scenario we are discussing would have to change (between phases 3 and 4). But heuristically, we can still think of adding up contributions in each phase, as follows:
For phases 1 and 2, the only contributions are the energy and momentum density of the dust. These change in concert in such a way as to leave the mass integral constant. Tthe only difference between phases 1 and 2 is whether the observer is inside or outside the shell, which affects whether he can measure the mass directly by measuring spacetime curvature in his vicinity. The mass itself, in the sense of the sum of contributions, does not change between phases 1 and 2.
For phase 3, as stated above, the mass is unchanged, but the individual contributions will be changing: basically, the "extra" energy density (i.e., energy density over the rest energy density) and momentum density of the dust is being converted to internal pressure of the final object, plus energy and momentum density in radiation.
For phase 4, the two "pieces" of the mass in phase 3 are now separated, and one (the radiation) is back outside the observer so it doesn't affect the spacetime curvature he sees. That's why he measures a smaller mass. That smaller mass is composed of contributions from the rest energy density and pressure of the matter inside the final object.
I'll follow up with one more comment in a separate post.