Green's theorem with a scalar function

Click For Summary
SUMMARY

This discussion centers on the application of Green's Theorem in the context of calculating circulation in the presence of a scalar function. Participants conclude that parameterizing the boundary into three distinct curves is a more efficient method than attempting to apply Green's Theorem directly. The curves are defined as follows: 1) \(x = t, y = t, 0 \le t \le 2\), 2) \(x = 2\cos(t), y= 2\sin(t), \pi/4 \le t \le \pi/2\), and 3) \(x = 0, y = t, 2 \ge t \ge 0\). The use of LaTeX for clearer communication of mathematical expressions is also recommended.

PREREQUISITES
  • Understanding of Green's Theorem
  • Ability to parameterize curves in a plane
  • Familiarity with integral calculus
  • Proficiency in LaTeX for mathematical notation
NEXT STEPS
  • Study the application of Green's Theorem in various contexts
  • Learn advanced techniques for parameterizing curves
  • Explore integral calculus applications in physics and engineering
  • Practice using LaTeX for mathematical documentation
USEFUL FOR

Students and educators in mathematics, particularly those focusing on vector calculus, as well as anyone involved in computational methods for solving integrals in physics or engineering contexts.

Amaelle
Messages
309
Reaction score
54
Homework Statement
Look at the image
Relevant Equations
Green theorem
circuitation
Greetings!
My question is: is it possible to use the green theorem to compute the circulation while in presence of a scalar function ? I know how to solve by parametrising each part but just in case we can go faster? thank you!
1644760912541.png
 
Physics news on Phys.org
I might b
Amaelle said:
Homework Statement:: Look at the image
Relevant Equations:: Green theorem
circuitation

Greetings!
My question is: is it possible to use the green theorem to compute the circulation while in presence of a scalar function ? I know how to solve by parametrising each part but just in case we can go faster? thank you!
View attachment 297061
I could be wrong, but I don't believe that Green's Theorem is a reasonable approach here. It seems much more straightforward to parameterize the boundary into three curves, and then evaluate the integral of each.

Going counterclockwise along ##\gamma##, we have
1. ##x = t, y = t, 0 \le t \le 2##
2. ##x = 2\cos(t), y= 2\sin(t), \pi/4 \le t \le \pi/2##
3. ##x = 0, y = t, 2 \ge t \ge 0##

BTW, your handwriting is not the easiest to read, particularly your shorthand abbreviations. Everything you wrote in longhand could be done using LaTeX, which would make it easier for us to understand.

For example:
Ex. 2: Compute ##\int_\gamma xy ds## where ##\gamma## is the parameterization of the boundary of
##D = \{(x, y) : x^2 + y^2 \le 2, x \ge 0, y \ge 0, y \ge x\}##
 
  • Love
Likes   Reactions: Amaelle
Mark44 said:
I might b

I could be wrong, but I don't believe that Green's Theorem is a reasonable approach here. It seems much more straightforward to parameterize the boundary into three curves, and then evaluate the integral of each.

Going counterclockwise along ##\gamma##, we have
1. ##x = t, y = t, 0 \le t \le 2##
2. ##x = 2\cos(t), y= 2\sin(t), \pi/4 \le t \le \pi/2##
3. ##x = 0, y = t, 2 \ge t \ge 0##

BTW, your handwriting is not the easiest to read, particularly your shorthand abbreviations. Everything you wrote in longhand could be done using LaTeX, which would make it easier for us to understand.

For example:
Ex. 2: Compute ##\int_\gamma xy ds## where ##\gamma## is the parameterization of the boundary of
##D = \{(x, y) : x^2 + y^2 \le 2, x \ge 0, y \ge 0, y \ge x\}##
Thank you so much!
 

Similar threads

Replies
3
Views
2K
Replies
28
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K