Griffiths Quantum Mechanics Problem 1.18: Characteristic Size of System

AI Thread Summary
The discussion centers on the interpretation of intermolecular distance in Griffiths' Quantum Mechanics Problem 1.18, contrasting a spherical model with a cubic box model. The volume per particle is represented differently in each model, leading to a significant factor difference of approximately 1.8. Participants agree that while a box may not fill space completely with spherical particles, it is often used for computational simplicity. The conversation highlights the importance of choosing an appropriate shape for accurate modeling in quantum mechanics. Ultimately, the choice of shape affects the understanding of particle distribution in a given volume.
yucheng
Messages
232
Reaction score
57
Homework Statement
The characteristic size (length) of ideal gas where quantum effects are non-negligible is the intermolecular distance, ##d##
Relevant Equations
##pV = Nk_BT##
intermolecular distance means distance between particles. So, I imagine a sphere.

$$\frac{4}{3} \pi d^3 = \frac{V}{N}$$

However, Griffitfhs pictures a box instead, where

$$d^3 = \frac{V}{N}$$

And the difference between both models is a factor of ##(4\pi/3)^{2/5} \approx 1.8##, which is fairly large...
 
Physics news on Phys.org
If you fill a box with oranges, does it fill the space completely? Griffiths is correct
 
hutchphd said:
If you fill a box with oranges, does it fill the space completely? Griffiths is correct
I think I understand... So I guess I should have searched for a reliable shape to fill the whole space!
 
And usually we imagine the box to be square, for computational convenience...
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top