A Ground state of the one-dimensional spin-1/2 Ising model

William Crawford
Messages
41
Reaction score
36
TL;DR Summary
How to derive the low energy ground state for the one-dimensional spin-1/2 Ising model on either a periodic or an infinite chain.
Hi,

I know that the ground state of the spin-1/2 Ising model is the ordered phase (either all spin up or all spin down). But how do I actually go about deriving this from say the one-dimensional spin hamiltonian itself, without having to solve system i.e. finding the partition function? $$ \mathcal{H} = -J\sum_n s_{n}s_{n+1}, \qquad s_n=\pm1 $$ I've tried computing the derivative of ## \mathcal{H} ## w.r.t. the spin variable ## s_i ##, but this leaves me with the trivial difference equation ## s_n + s_{n+1} = 0 ## yielding the high energy solution ## s_n = (-1)^ns_0 ## and not the low energy solution that I was searching for (assuming ##J>0##).
 
Last edited:
Physics news on Phys.org
Never mind, I've solved it myself. Simply using that
$$ \min_{\lbrace s_n\rbrace}\mathcal{H} = \sum_n\min\left(-Js_ns_{n+1}\right). $$
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Back
Top