A Ground state of the one-dimensional spin-1/2 Ising model

William Crawford
Messages
41
Reaction score
36
TL;DR Summary
How to derive the low energy ground state for the one-dimensional spin-1/2 Ising model on either a periodic or an infinite chain.
Hi,

I know that the ground state of the spin-1/2 Ising model is the ordered phase (either all spin up or all spin down). But how do I actually go about deriving this from say the one-dimensional spin hamiltonian itself, without having to solve system i.e. finding the partition function? $$ \mathcal{H} = -J\sum_n s_{n}s_{n+1}, \qquad s_n=\pm1 $$ I've tried computing the derivative of ## \mathcal{H} ## w.r.t. the spin variable ## s_i ##, but this leaves me with the trivial difference equation ## s_n + s_{n+1} = 0 ## yielding the high energy solution ## s_n = (-1)^ns_0 ## and not the low energy solution that I was searching for (assuming ##J>0##).
 
Last edited:
Physics news on Phys.org
Never mind, I've solved it myself. Simply using that
$$ \min_{\lbrace s_n\rbrace}\mathcal{H} = \sum_n\min\left(-Js_ns_{n+1}\right). $$
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top