GRX-810, Advanced Multi-principal Element Alloy (MPEA)

AI Thread Summary
NASA and The Ohio State University have introduced GRX-810, a groundbreaking 3D printable superalloy designed for high-temperature applications in aerospace. This oxide dispersion strengthened alloy significantly enhances strength, durability, and oxidation resistance, making it twice as strong and over 1,000 times more durable than current superalloys. GRX-810 effectively overcomes the strength-ductility trade-off through advanced atomic-scale deformation mechanisms. Its composition includes nickel, cobalt, chromium, and other elements that contribute to its robust properties. Licensed to four American companies, GRX-810 is poised to impact aerospace engineering and the U.S. economy positively.
Astronuc
Staff Emeritus
Science Advisor
Gold Member
Messages
22,340
Reaction score
7,138
NASA has demonstrated a breakthrough in 3D printable high-temperature materials that could lead to stronger, more durable parts for airplanes and spacecraft.

A team of innovators from NASA and The Ohio State University detailed the characteristics of the new alloy, GRX-810, in a peer-reviewed paper published in the journal Nature.

“This superalloy has the potential to dramatically improve the strength and toughness of components and parts used in aviation and space exploration,” said Dr. Tim Smith of NASA’s Glenn Research Center in Cleveland, lead author of the Nature paper. Smith and his Glenn colleague Christopher Kantzos invented GRX-810.
https://www.nasa.gov/image-feature/nasas-new-3d-printed-superalloy-can-take-the-heat

GRX-810 is an oxide dispersion strengthened alloy. In other words, tiny particles containing oxygen atoms spread throughout the alloy enhance its strength. Such alloys are excellent candidates to build aerospace parts for high-temperature applications, like those inside aircraft and rocket engines, because they can withstand harsher conditions before reaching their breaking points.

Current state-of-the-art 3D printed superalloys can withstand temperatures up to 2,000 degrees Fahrenheit. Compared to those, GRX-810 is twice as strong, over 1,000 times more durable, and twice as resistant to oxidation.

I searched for the composition, which I found in an open access Nature article
https://www.nature.com/articles/s41586-023-05893-0

Ni bal, 33 Co, 29 Cr, 3 W, 1.5 Re, 0.75 Nb, 0.25 Ti, 0.3 Al, 0.05 C; Nb and Ti form carbides.

Claims:
Overcoming the strength–ductility trade-off is a result of atomic-scale deformation mechanisms16, such as locally variable stacking-fault energies19 and magnetically driven phase transformations20. This class of alloys has also proven to be robust, resisting hydrogen environment embrittlement21, exhibiting improved irradiation properties22 and providing superior strength at cryogenic temperatures23.
Ref 22: https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.116.135504
 
  • Informative
  • Like
Likes DeBangis21 and Tom.G
Engineering news on Phys.org
The development of GRX-810 as a new oxide dispersion strengthened alloy is a significant breakthrough for the aerospace industry. NASA's demonstration of its superior strength, durability, and resistance to oxidation makes it a promising material for use in high-temperature applications. This alloy has the potential to improve the performance and reliability of components and parts in both aircraft and spacecraft.

One of the key advantages of GRX-810 is its ability to overcome the traditional strength-ductility trade-off, a common limitation in many high-temperature materials. This is achieved through the use of atomic-scale deformation mechanisms, such as variable stacking-fault energies and magnetically driven phase transformations. Additionally, GRX-810 has been shown to have excellent resistance to hydrogen embrittlement, improved irradiation properties, and superior strength at cryogenic temperatures.

The composition of GRX-810, as described in the Nature article, includes a balance of nickel, cobalt, chromium, and other elements such as tungsten, rhenium, niobium, and titanium. The addition of these elements, particularly niobium and titanium, helps to form carbides that contribute to the alloy's strength and durability.

Overall, the development of GRX-810 as a 3D printable superalloy presents exciting possibilities for the future of aerospace engineering. Its improved properties and potential for use in extreme environments make it a valuable addition to the materials available for building aircraft and spacecraft. It will be interesting to see how this new alloy is further developed and utilized in the coming years.
 
As of now, the superalloy is licensed to four American companies; going forward, it could result in positive commercial dividends, NASA says, and benefit the overall U.S. economy.

The four companies selected are Carpenter Technology Corporation of Reading, Pennsylvania, Elementum 3D, Inc. of Erie, Colorado, Linde Advanced Material Technologies, Inc. of Indianapolis, and Powder Alloy Corporation of Loveland, Ohio.
https://www.space.com/us-economy-nasa-3d-printed-superalloy

GRX-810 was originally developed with aerospace equipment in mind, including liquid rocket engine injectors, combustors, turbines and hot-section components capable of enduring temperatures over 2,000 degrees Fahrenheit (1,093 degrees Celsius), according to a NASA release. The brains behind the superalloy are Tim Smith and Christopher Kantzos, both researchers at NASA Glenn. They say the design was drafted up by pairing computer modeling with a laser 3D-printing process to meld together, layer-by-layer, the metals involved.
 
Hello! I've been brainstorming on how to prevent a lot of ferrofluid droplets that are in the same container. This is for an art idea that I have (I absolutely love it when science and art come together) where I want it to look like a murmuration of starlings. Here's a link of what they look like: How could I make this happen? The only way I can think of to achieve the desired effect is to have varying droplet sizes of ferrofluid suspended in a clear viscous liquid. Im hoping for the...
Hello everyone! I am curious to learn how laboratories handle in-house chip manufacturing using soft lithography for microfluidics research. In the lab where I worked, only the mask for lithography was made by an external company, whereas the mold and chip fabrication were carried out by us. The process of making PDMS chips required around 30 min–1 h of manual work between prepolymer casting, punching/cutting, and plasma bonding. However, the total time required to make them was around 4...

Similar threads

Back
Top