I Hamiltonian of the bead rotating on a horizontal stick

AI Thread Summary
The discussion centers on the derivation of the Hamiltonian for a bead rotating on a horizontal stick with constant angular speed, as presented in David Morin's "Introduction to Classical Mechanics." The Lagrangian does not include the derivative over angular speed because the angular speed is constant, leading to the conclusion that the only generalized coordinate is the bead's radial position, r. This results in the Hamiltonian reflecting only the kinetic energy associated with the radial motion. The participants clarify that the stick's position is a function of time and does not vary with initial conditions, confirming the system has only one degree of freedom. The conversation highlights the importance of recognizing fixed parameters in dynamical systems.
Michael Korobov
Messages
6
Reaction score
0
TL;DR Summary
Why Lagrangian derivative over angle isn't included in the Hamiltonian calculation?
Hi,
In David Morin's "Introduction to classical mechanics", Problem 6.8, when deriving Hamiltonian of the bead rotating on a horizontal stick with constant angular speed, the Lagrangian derivative over angular speed isn't included.
Why is that?
Specifically, the Lagrangian takes form $$L=T=\frac{m {\dot r}^2}{2}+\frac{mr^2\omega^2}{2}=\frac{m {\dot r}^2}{2}+\frac{mr^2{\dot \theta}^2}{2}$$
The Hamiltonian is then calculated as
$$H=\left(\sum_{i=1}^N \frac{\partial L}{\partial {\dot q_i}}{\dot q_i} \right)-L=\frac{m {\dot r}^2}{2}-\frac{mr^2\omega^2}{2}$$
This implies either $$\frac{\partial L}{\partial {\dot \theta}}{\dot \theta}=0$$
or that the only generalized coordinate is ##r## and therefore ##N=1##
Why is that? I understand this relates to ##{\dot \theta}=const## but didn't manage to understand why the partial derivate should be 0.

Later on, in the "Analytical Mechanics" by Hand and Finch, in Question 14 on p.22, there is identical question and then they ask how Hamiltonian looks like if ##\omega=\omega (t) \neq const## which I presume should include Lagrangian dependency on ##\dot \theta##

Thanks a lot,
Michael
 
Physics news on Phys.org
In the second equation the second term of RHS has plus sign. In the third equation LHS is nonzero.
 
anuttarasammyak said:
In the second equation the second term of RHS has plus sign. In the third equation LHS is nonzero.
This is the exact solution from Morin.
The equation 6.142 corresponds to the second equation in my question
If we presume ##\omega=\dot \theta## then we have to take partial derivative over it into account, But this doesn't happen.
Looks like I'm missing something obvious...

bead_on_stick.png
 
Looks like I understood the problem.
The position of the stick is not the dynamical variable as it's a given function of time not depending on initial conditions therefore shouldn't be considered.
So, the system effectively has only one degree of freedom - bead's position on the wire.
Thanks!
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top