the problem is as follows: in the ground state of the harmonic oscillator what is the probabilty of finding the particle outside the classically allowed region. where the classically allowed nrg is given by E=(1/2)m*omega^2*a^2 (where a is the amplitude).(adsbygoogle = window.adsbygoogle || []).push({});

were given that psi(x)=(m*omega/pi*h-bar)^(1/4)*(2^n*n!)^(-1/2)*H(zeta)*e^(-zeta^2/2)

where H(zeta) depends on n, but for this problem n=0

so i figured that if the probabilty of this from 0 to infinity (which is 1/2) then subtract the probability from 0 to the classical nrg, then the remainer should be the probablity of finding it outside the said classical region. right?

but that leads to the problem of finding the integral of e^(-a*x^2) from 0 to classical nrg... and this doesn't seem possible... is it?

cheers!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Harmonic oscillator outside classically allowed region

**Physics Forums | Science Articles, Homework Help, Discussion**