Hello(adsbygoogle = window.adsbygoogle || []).push({});

Please see the attached illustration, hope it gives a idea of what is going on. If I do not include radiation and the cylinder is infinite thin, how can I calculate this situation:

(1) The water flow is constant inlet=outlet and steady state flow.

(2) First there is not a heat source in the bottom of the closed cylinder.

(3) The heat source (Q3=W, T3=C) begin the heat the cylinder, with a constant heat rate. If it makes it easier it can be calculated like the heat source is on every cylinder surfaces..

T2 will rise slowly and reach a max. over some time. How long time will it take? I looked for a lumped capacity method equation in my heat transfer book, but could not find one.. Hope you can help me..

And what if the flow is through a long pipe with inlet and outlet?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Heat transfer inside a cylinder with flowing water

**Physics Forums | Science Articles, Homework Help, Discussion**