T.Rex
- 62
- 0
Hi, I need some help about properties of Pell numbers:
U_n = 2 U_{n-1} + U_{n-2} , \text{ with: } U_0=0 \text{<br /> and: } U_1=1
V_n = 2 V_{n-1} + V_{n-2} , \text{ with: } V_0=2 \text{<br /> and: } V_1=2
I have a proof for:
\frac{V_{\displaystyle 2^{\scriptstyle n}}}{2}<br /> \ = \ 1 + 4 \prod_{i=0}^{n-2}V_{\displaystyle 2^{\scriptstyle<br /> i}}^{\scriptstyle 2} \ \equiv \ 1 \pmod{2^{\scriptstyle 2n}} \<br /> \text{\ \ \ \ (for } n \geq 2 )
But I have no proof for C1:
\frac{V_{\displaystyle 2^{\scriptstyle n}+1}}{2}<br /> \ \equiv \ 1 \pmod{2^{\scriptstyle n+1}} \ \text{\ \ \ \ (for<br /> } n \geq 2 )
and C2:
p,q \ \text{ odd primes }, \ \ p \mid V_{\displaystyle q} \ \ \Longrightarrow \ \ p \equiv 1 \pmod{2q}
and C3:
p \ \text{ odd prime }, \ \ p \mid V_{\displaystyle 2^{\scriptstyle i}} \ \ \Longrightarrow \ \ p \equiv 1 \pmod{2^{\scriptstyle i+2}}
and C4 (a guess):
p \ \text{ odd prime }, \ \ p \mid V_{\displaystyle 2^{\scriptstyle i}} \ <br /> \text{ and } \ p = 1 + {(2^{\scriptstyle i}\alpha)}^2 \ \ <br /> \Longrightarrow \ \ \alpha = \prod_{j=0}^{k} F_j \ \text{ or } \<br /> \alpha = 1.
Can you help ?
Thanks,
Tony
U_n = 2 U_{n-1} + U_{n-2} , \text{ with: } U_0=0 \text{<br /> and: } U_1=1
V_n = 2 V_{n-1} + V_{n-2} , \text{ with: } V_0=2 \text{<br /> and: } V_1=2
I have a proof for:
\frac{V_{\displaystyle 2^{\scriptstyle n}}}{2}<br /> \ = \ 1 + 4 \prod_{i=0}^{n-2}V_{\displaystyle 2^{\scriptstyle<br /> i}}^{\scriptstyle 2} \ \equiv \ 1 \pmod{2^{\scriptstyle 2n}} \<br /> \text{\ \ \ \ (for } n \geq 2 )
But I have no proof for C1:
\frac{V_{\displaystyle 2^{\scriptstyle n}+1}}{2}<br /> \ \equiv \ 1 \pmod{2^{\scriptstyle n+1}} \ \text{\ \ \ \ (for<br /> } n \geq 2 )
and C2:
p,q \ \text{ odd primes }, \ \ p \mid V_{\displaystyle q} \ \ \Longrightarrow \ \ p \equiv 1 \pmod{2q}
and C3:
p \ \text{ odd prime }, \ \ p \mid V_{\displaystyle 2^{\scriptstyle i}} \ \ \Longrightarrow \ \ p \equiv 1 \pmod{2^{\scriptstyle i+2}}
and C4 (a guess):
p \ \text{ odd prime }, \ \ p \mid V_{\displaystyle 2^{\scriptstyle i}} \ <br /> \text{ and } \ p = 1 + {(2^{\scriptstyle i}\alpha)}^2 \ \ <br /> \Longrightarrow \ \ \alpha = \prod_{j=0}^{k} F_j \ \text{ or } \<br /> \alpha = 1.
Can you help ?
Thanks,
Tony