Help calculating the current from the density and a rotating frame

AI Thread Summary
To calculate the current I(t) from the given current density and surface vector in a rotating frame, the integration of the current density function J with respect to time t in the x direction is necessary. The current density is expressed as J = J0 * x/Λ, and the surface vector A is defined in terms of cosine and sine functions of angular frequency wt. Clarification on the configuration and rewriting the current density function may aid in understanding the problem better. The integration approach should focus solely on the x direction due to the absence of a y component in the current density. This method will help in accurately determining I(t).
liran avraham
Messages
7
Reaction score
0
Thread moved from the technical forums and poster has been reminded to show their work
hi need help in physics HW:
given current density [J][/→]=[J][/0][x][/Λ]
and rotating frame with given surface vector:
$$ A^→ = A_0(cos(wt)x^Λ + sin(wt)y^Λ$$
in need to calculate I(t)
i tried
I = ∫J*dA
but i don't know i to technically do the math
please help me
 
Physics news on Phys.org
Could you elaborate - it's not so clear what problem you actually want to solve! First off, what does the configuration look like?
 
Hi there. Rewrite your current density function to make it clearer.

Going off of what you've written, it looks like you would integrate your current density function with respect to "t" in the "x" direction since there is not a "y" direction in your current density function.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top