- #1
norman95
- 6
- 1
- Let Q denote the theory of Robinson Arithmetic. A theory T is nice iff T is consistent, is p.r. adequate and extends Q. The fixed-point lemma states that for all nice theories T, for any formula φ, there is a sentence σ such that
T ⊢σ↔φ("σ") Given a set of formulas X, let gn(X) = {"φ" | φ ∈ X} be the set of Godel numbers of formulas in X. (Quotation mark denote Godel numbers.) Prove that there is no decidable set R such that gn(Q) ⊆ R and gn({σ | ¬σ ∈ Q}) ⊆ R.
Please help guys, I've been really sick for the last two week and missed all the relevant material, and now this is due tonight!