Help Needed Proving Implication for Linear Functional on Banach Space

Click For Summary
The discussion focuses on proving that a linear functional on a Banach space is continuous if and only if its kernel is closed. The user, Carter, is struggling with demonstrating that the preimage of zero under the functional, denoted as A, is closed. There is a mention of the equivalence of continuity and boundedness of the functional, which can aid in the proof. Additionally, a formatting note is provided regarding the proper use of double hash for mathematical notation. The conversation emphasizes the importance of understanding the relationship between continuity and the properties of the kernel in functional analysis.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Homework Statement
Show that for any linear functional ##l## on ##B## is continuous if and only if ##A=\{f\in\B:l(f)=0\}## is closed.
Relevant Equations
#B# is a Banach space over the complex field and #ker(l)={f\in \mcalB: l(f)=0}#
Dear everybody,

I am having some trouble proving the implication (or the forward direction.) Here is my work:

Suppose that we have an arbitrary linear functional ##l## on a Banach Space ##B## is continuous. Since ##l## is continuous linear functional on B, in other words, we want show that ##l^{-1}\{0\}=A## and this is closed. I am having trouble with this claim.

Thanks
Carter
 
Last edited:
Physics news on Phys.org
cbarker1 said:
Homework Statement:: Show that for any linear functional #l# on #B# is continuous if and only if #A=\{f\in\mclB:l(f)=0\}# is closed.
Relevant Equations:: #B# is a Banach space over the complex field and #ker(l)={f\in \mcalB: l(f)=0}#

Dear everybody,

I am having some trouble proving the implication (or the forward direction.) Here is my work:

Suppose that we have an arbitrary linear functional l on a Banach Space #B# is continuous. Since #l# is continuous linear functional on #B#, in other words, we want show that #l^{-1}{0}=A# and this is closed. I am having trouble with this claim.

Thanks
Carter
It is also equivalent to being bound. You can use this for the way back.
 
@cbarker1 : Please use a double hash to wrap your math. Like in ##l^{-1}##, instead of a single one , like #l^{-1}#.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...

Similar threads