MHB Help Solving an Integral: I've Tried, But Can't Seem to Get It

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Integral
Click For Summary
The integral $$\int \frac{e^x}{e^{2x} + 1}\,dx$$ can be solved using substitution methods. By letting \( u = e^x \), the integral simplifies to $$\int \frac{du}{u^2 + 1}$$, which integrates to \( \arctan(u) + C \). Back-substituting gives the final result as \( \arctan(e^x) + C \). Another method involves substituting \( e^x = \tan(\theta) \), leading to the same conclusion. The integral can be effectively solved using these substitution techniques.
tmt1
Messages
230
Reaction score
0
I need to solve this integral. I've had this problem for about a month and I'm still not sure how to solve it:

$$\int_{}^{} \frac{e^x}{e^{2x} + 1}\,dx$$

I've tried a few methods, but I haven't gotten very far.
 
Physics news on Phys.org
tmt said:
I need to solve this integral. I've had this problem for about a month and I'm still not sure how to solve it:

$$\int_{}^{} \frac{e^x}{e^{2x} + 1}\,dx$$

I've tried a few methods, but I haven't gotten very far.

Substitute $\displaystyle \begin{align*} \mathrm{e}^x = \tan{ \left( \theta \right) } \implies \mathrm{e}^x\,\mathrm{d}x = \sec^2{ \left( \theta \right) } \,\mathrm{d}\theta \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{\mathrm{e}^x}{\mathrm{e}^{2\,x} + 1} \,\mathrm{d}x} &= \int{ \frac{\sec^2{ \left( \theta \right) } }{\tan^2{ \left( \theta \right) } + 1 } \,\mathrm{d}\theta } \\ &= \int{ \frac{\sec^2{ \left( \theta \right) } }{ \sec^2{ \left( \theta \right) } }\,\mathrm{d}\theta } \\ &= \int{ 1\,\mathrm{d}\theta } \\ &= \theta + C \\ &= \arctan{ \left( \mathrm{e}^x \right) } + C \end{align*}$
 
tmt said:
$$\int_{}^{} \frac{e^x}{e^{2x} + 1}\,dx$$
\text{Let }\,u = e^x \quad\Rightarrow\quad du \,=\,e^x\,dx

\text{Substitute: }\;\int \frac{du}{u^2+1}

\text{Integrate: }\; \arctan u + C

\text{Back-substitute: }\;\arctan(e^x) + C
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
21
Views
3K
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K