1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Help Solving the following Differential equation

  1. May 3, 2016 #1
    1. The problem statement, all variables and given/known data
    Solve (x-1)y''-xy'+y=0 , given x>1 and y1=ex

    2. Relevant equations


    3. The attempt at a solution
    I've tried solving it by multiplying everythin for (1/x-1), so my equation looks like:
    y''-(x/x-1)y'+y=0 (because x-1 is unequal to 0) (1)
    so now the equation has the form of:
    y''+p(x)y'+y=0, with p(x)=(-x/x-1).
    Then, given the fact that y1 is a solution, then another solution has the form Y(x)=v(x)y1
    Then: Y'(x)=v'(x)y1+v(x)y1'
    Y''(X)=v''(x)y1+v'(x)y1+v'(x)y1+v(x)y1'
    Now, after replacing the y factors in (1) with Y and its derivatives, I get:
    v''(x)y1+(2y1+p(x)y1=0,
    Which can me solved as a first order differential equation by doing v''(x)=z'(x) and v'(x)=z(x).
    Then, let μ(x)=e∫p(x)dx=e∫(-x/x-1)dx=e-x-ln(x-1)=e-x(1/x-1)
    Then, z(x)=(∫μ(x)g(x)dx+c1)/μ(x)=c1/(e-x/(x-1))=c1(ex(x-1))

    Now, because z(x)=v'(x)→∫z(x)dx=v(x)
    Then I have v(x)=c1∫(ex(x-1)dx=c1((x-2)ex+c2)
    But, whenever I do Y(x)=v(x)y1, and replace it in (1), it doesn't satisfy the equation-

    Can somebody help?
     
  2. jcsd
  3. May 3, 2016 #2
    In the first line I believe that you should have y''-(x/x-1)y'+y(1/(x-1))=0
     
  4. May 3, 2016 #3

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    Welcome to PF;
    Is y1 a solution?

    When you are given a solution, always try reduction of order.
    Try y(x)=v(x)e^x and solve for v.
     
  5. May 4, 2016 #4

    Ray Vickson

    User Avatar
    Science Advisor
    Homework Helper

    Please learn to use parentheses properly, so that you write ##\frac{1}{x-1}## instead of ##\frac{1}{x}-1##, as you have done throughout (thus making everything you write incorrect). It's easy: just write 1/(x-1) instead of 1/x-1.
     
  6. May 4, 2016 #5

    Mark44

    Staff: Mentor

    @Jose Z, you have parentheses in what you wrote -- (1/x-1) -- the problem is that they are in the wrong place. They should be around the terms in the denominator, the way that Ray wrote the fraction, not around the entire fraction.
     
  7. May 4, 2016 #6

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    @Jose Z : How did you get on?

    I feel we have been dumping on you somewhat ... I thought the use of parentheses in post #1 was clear from context and the proper use is only a recommended tweak for future consideration (It won't always be clear). As first posts go, yours was high quality: you have sincerely attempted the problem, as well as shown how you got stuck, so it is easy to decide what we need to tell you so you get the most out of these forums.

    Well done and keep it up. :)
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Help Solving the following Differential equation
Loading...