Ask4material
- 17
- 0
[Help]The proof of (a.c)b-(a.b)c=aX(bXc)
formula: \hat{b}(\hat{a}\cdot\hat{c})-\hat{c}(\hat{a}\cdot\hat{b})=\hat{a}\times(\hat{b}\times\hat{c})
\hat{a}\times(\hat{b}\times\hat{c}) is on the \hat{b}, \hat{c} plane, so:
\hat{b}r+\hat{c}s=\hat{a}\times(\hat{b}\times\hat{c})
want to proof:\begin{array}{l}r=(\hat{a}\cdot\hat{c})\\s=-(\hat{a}\cdot\hat{b})\end{array}
\hat{a}\cdot both sides:
\hat{a}\cdot(\hat{b}r+\hat{c}s)=\hat{a}\cdot[\hat{a}\times(\hat{b}\times\hat{c})]
(\hat{a}\cdot\hat{b})r+(\hat{a}\cdot\hat{c})s=0
It seems needing another condition to distinguish \hat{a}\times(\hat{b}\times\hat{c}) and (\hat{b}\times\hat{c})\times\hat{a}
formula: \hat{b}(\hat{a}\cdot\hat{c})-\hat{c}(\hat{a}\cdot\hat{b})=\hat{a}\times(\hat{b}\times\hat{c})
\hat{a}\times(\hat{b}\times\hat{c}) is on the \hat{b}, \hat{c} plane, so:
\hat{b}r+\hat{c}s=\hat{a}\times(\hat{b}\times\hat{c})
want to proof:\begin{array}{l}r=(\hat{a}\cdot\hat{c})\\s=-(\hat{a}\cdot\hat{b})\end{array}
\hat{a}\cdot both sides:
\hat{a}\cdot(\hat{b}r+\hat{c}s)=\hat{a}\cdot[\hat{a}\times(\hat{b}\times\hat{c})]
(\hat{a}\cdot\hat{b})r+(\hat{a}\cdot\hat{c})s=0
It seems needing another condition to distinguish \hat{a}\times(\hat{b}\times\hat{c}) and (\hat{b}\times\hat{c})\times\hat{a}
Last edited: