MHB Help Understanding Bland's Proposition 4.3.14 in Rings and Their Modules

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.3: Modules Over Principal Ideal Domains ... and I need some further help in order to fully understand the proof of Proposition 4.3.14 ... ...

Proposition 4.3.14 reads as follows:View attachment 8320
View attachment 8321In the above proof by Bland we read the following:

" ... ... If $$\{ x_1 \}$$ is a basis for $$F$$, then there is an $$a \in R$$ such that $$x = x_1 a$$. But $$x$$ is primitive, so $$a$$ is a unit in $$R$$. Hence $$x R = x_1 R$$ ... ... "

My question is as follows:

Why in the above quote, does it follow that $$x R = x_1 R$$ ... ... ?Is it because $$x = x_1 a$$ where $$a$$ is a unit ... ... ... ... ... (1)

Hence $$xR = x_1 a R$$ ... ... I presume this follows (1)

Therefore $$xR = x_1 (a R )$$

But $$aR = R$$ since a is a unit ... ''

So $$xR = x_1 R $$

Is that correct?

Peter
 
Physics news on Phys.org
Yes, you did it correct.

You can do it also this way:

Let $y \in xR$ then $y=xr=x_1ar \in x_1R$
and
Let $y \in x_1R$ then $y=x_1s=xa^{-1}s \in xR$
 
steenis said:
Yes, you did it correct.

You can do it also this way:

Let $y \in xR$ then $y=xr=x_1ar \in x_1R$
and
Let $y \in x_1R$ then $y=x_1s=xa^{-1}s \in xR$

Thanks for the help, Steenis ...

Peter
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top