MHB Help Understanding Bland's Proposition 4.3.14 in Rings and Their Modules

Click For Summary
Proposition 4.3.14 in Bland's "Rings and Their Modules" establishes that if a module has a basis and an element is expressed as a product with a unit, then the generated ideals are equal. The discussion clarifies that since \( x = x_1 a \) with \( a \) being a unit, it follows that \( xR = x_1 R \). This is demonstrated by showing that any element in \( xR \) can be expressed in \( x_1 R \) and vice versa. The reasoning confirms that the equality of the ideals holds due to the properties of units in the ring. The participants agree on the correctness of the explanation provided.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book, "Rings and Their Modules".

I am focused on Section 4.3: Modules Over Principal Ideal Domains ... and I need some further help in order to fully understand the proof of Proposition 4.3.14 ... ...

Proposition 4.3.14 reads as follows:View attachment 8320
View attachment 8321In the above proof by Bland we read the following:

" ... ... If $$\{ x_1 \}$$ is a basis for $$F$$, then there is an $$a \in R$$ such that $$x = x_1 a$$. But $$x$$ is primitive, so $$a$$ is a unit in $$R$$. Hence $$x R = x_1 R$$ ... ... "

My question is as follows:

Why in the above quote, does it follow that $$x R = x_1 R$$ ... ... ?Is it because $$x = x_1 a$$ where $$a$$ is a unit ... ... ... ... ... (1)

Hence $$xR = x_1 a R$$ ... ... I presume this follows (1)

Therefore $$xR = x_1 (a R )$$

But $$aR = R$$ since a is a unit ... ''

So $$xR = x_1 R $$

Is that correct?

Peter
 
Physics news on Phys.org
Yes, you did it correct.

You can do it also this way:

Let $y \in xR$ then $y=xr=x_1ar \in x_1R$
and
Let $y \in x_1R$ then $y=x_1s=xa^{-1}s \in xR$
 
steenis said:
Yes, you did it correct.

You can do it also this way:

Let $y \in xR$ then $y=xr=x_1ar \in x_1R$
and
Let $y \in x_1R$ then $y=x_1s=xa^{-1}s \in xR$

Thanks for the help, Steenis ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K