LCKurtz
Science Advisor
Homework Helper
- 9,567
- 775
You have the series
<br /> f(x) = \sum_{k=1}^{\infty} \frac{4 \cdot (cos(k\pi)-1)}{k^3\cdot \pi} \cdot sin(kx) <br />
and you know the numerator is 8 when k is odd and 0 when k is even. So rewrite it like this showing just the odd non-zero terms:
<br /> f(x) = \sum_{k=1}^{\infty} \frac{8}{(2k-1)^3\cdot \pi} \cdot sin((2k-1)x) <br />
<br /> = \frac 8 \pi \sum_{k=1}^{\infty} \frac{1}{(2k-1)^3} \cdot sin((2k-1)x) <br />
Solve it for your problem series and your answer is ?
<br /> f(x) = \sum_{k=1}^{\infty} \frac{4 \cdot (cos(k\pi)-1)}{k^3\cdot \pi} \cdot sin(kx) <br />
and you know the numerator is 8 when k is odd and 0 when k is even. So rewrite it like this showing just the odd non-zero terms:
<br /> f(x) = \sum_{k=1}^{\infty} \frac{8}{(2k-1)^3\cdot \pi} \cdot sin((2k-1)x) <br />
<br /> = \frac 8 \pi \sum_{k=1}^{\infty} \frac{1}{(2k-1)^3} \cdot sin((2k-1)x) <br />
Solve it for your problem series and your answer is ?