I Help with a derivation from a paper (diatomic molecular potential)

Malamala
Messages
345
Reaction score
28
Hello! I am confused about the derivation in the screenshot below. This is in the context of a diatomic molecular potential, but the question is quite general. Say that the potential describing the interaction between 2 masses, as a function of the radius between them is given by the anharmonic oscillator potential in eq 4., where ##r_e## is the equilibrium separation. What I need is to calculate the expectation value of a new variable, ##X(r)## in between 2 wavefunctions of such a potential, eq. 2 (please ignore eq. 3 and most of the comments in the paragraph after, as they are not related to my question). They Taylor expand ##X(r)## as in eq. 5 and then they claim that from there it follows that ##X_\nu## (eq. 2) is given by eq. 6. Can someone help me understand how to go from eq. 2, 4 and 5 to eq. 6? Thank you!
Screenshot 2023-06-06 at 1.35.40 PM.png
 
Physics news on Phys.org
Can you explain what is ##X(r)## and give a reference to the source from which you took the screenshot?
 
div_grad said:
Can you explain what is ##X(r)## and give a reference to the source from which you took the screenshot?
X(r) can be any function of r (well any function that can be written as a Taylor series around some value). The original paper is this: https://www.sciencedirect.com/science/article/abs/pii/0022285279900602
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top