I Help with a derivation from a paper (diatomic molecular potential)

Malamala
Messages
342
Reaction score
28
Hello! I am confused about the derivation in the screenshot below. This is in the context of a diatomic molecular potential, but the question is quite general. Say that the potential describing the interaction between 2 masses, as a function of the radius between them is given by the anharmonic oscillator potential in eq 4., where ##r_e## is the equilibrium separation. What I need is to calculate the expectation value of a new variable, ##X(r)## in between 2 wavefunctions of such a potential, eq. 2 (please ignore eq. 3 and most of the comments in the paragraph after, as they are not related to my question). They Taylor expand ##X(r)## as in eq. 5 and then they claim that from there it follows that ##X_\nu## (eq. 2) is given by eq. 6. Can someone help me understand how to go from eq. 2, 4 and 5 to eq. 6? Thank you!
Screenshot 2023-06-06 at 1.35.40 PM.png
 
Physics news on Phys.org
Can you explain what is ##X(r)## and give a reference to the source from which you took the screenshot?
 
div_grad said:
Can you explain what is ##X(r)## and give a reference to the source from which you took the screenshot?
X(r) can be any function of r (well any function that can be written as a Taylor series around some value). The original paper is this: https://www.sciencedirect.com/science/article/abs/pii/0022285279900602
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top