Undergrad Help with a derivation from a paper (diatomic molecular potential)

Click For Summary
The discussion revolves around understanding the derivation of the expectation value of a variable, X(r), in the context of a diatomic molecular potential described by an anharmonic oscillator. The user seeks clarification on how to transition from equations 2, 4, and 5 to equation 6, specifically regarding the Taylor expansion of X(r). It is noted that X(r) can be any function of r that can be expressed as a Taylor series. The original source of the equations is a scientific paper linked in the discussion. Assistance is requested to clarify these derivations and the nature of X(r).
Malamala
Messages
348
Reaction score
28
Hello! I am confused about the derivation in the screenshot below. This is in the context of a diatomic molecular potential, but the question is quite general. Say that the potential describing the interaction between 2 masses, as a function of the radius between them is given by the anharmonic oscillator potential in eq 4., where ##r_e## is the equilibrium separation. What I need is to calculate the expectation value of a new variable, ##X(r)## in between 2 wavefunctions of such a potential, eq. 2 (please ignore eq. 3 and most of the comments in the paragraph after, as they are not related to my question). They Taylor expand ##X(r)## as in eq. 5 and then they claim that from there it follows that ##X_\nu## (eq. 2) is given by eq. 6. Can someone help me understand how to go from eq. 2, 4 and 5 to eq. 6? Thank you!
Screenshot 2023-06-06 at 1.35.40 PM.png
 
Physics news on Phys.org
Can you explain what is ##X(r)## and give a reference to the source from which you took the screenshot?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K