I Help with a derivation from a paper (diatomic molecular potential)

Malamala
Messages
345
Reaction score
28
Hello! I am confused about the derivation in the screenshot below. This is in the context of a diatomic molecular potential, but the question is quite general. Say that the potential describing the interaction between 2 masses, as a function of the radius between them is given by the anharmonic oscillator potential in eq 4., where ##r_e## is the equilibrium separation. What I need is to calculate the expectation value of a new variable, ##X(r)## in between 2 wavefunctions of such a potential, eq. 2 (please ignore eq. 3 and most of the comments in the paragraph after, as they are not related to my question). They Taylor expand ##X(r)## as in eq. 5 and then they claim that from there it follows that ##X_\nu## (eq. 2) is given by eq. 6. Can someone help me understand how to go from eq. 2, 4 and 5 to eq. 6? Thank you!
Screenshot 2023-06-06 at 1.35.40 PM.png
 
Physics news on Phys.org
Can you explain what is ##X(r)## and give a reference to the source from which you took the screenshot?
 
div_grad said:
Can you explain what is ##X(r)## and give a reference to the source from which you took the screenshot?
X(r) can be any function of r (well any function that can be written as a Taylor series around some value). The original paper is this: https://www.sciencedirect.com/science/article/abs/pii/0022285279900602
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top