Help with a limit equation involving tangent

  • Thread starter Thread starter Cacophony
  • Start date Start date
  • Tags Tags
    Limit Tangent
Cacophony
Messages
41
Reaction score
0

Homework Statement



How do I solve this equation?

lim x>0 (x^3 - 2x^2 + x)/tanx

I don't know what to do here, please help. Thank you
 
Physics news on Phys.org
divide numerator and denominator by x..
 
Cacophony said:

Homework Statement



How do I solve this equation?

lim x>0 (x^3 - 2x^2 + x)/tanx

I don't know what to do here, please help. Thank you

Are you familiar with L'Hôpital's rule?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top