(adsbygoogle = window.adsbygoogle || []).push({}); Prove that if a(t) is a unit vector whose components are functions of t, then the vector b(t) = da(t)/dt is perpendicular to a(t)

here i have the parameters that make a(t) a unit vector:

1 = f(t)^2 + g(t)^2

i know of the example sinxi + cosxj = a(t)

but that is the only one i can get to work. I need a general proof though so:

a(t) = f(t)^2 i + g(t)^2 j

b(t) = f '(t) i + g '(t) j

(dot) product of a(t) and b(t) is:

f(t)*f '(t) + g(t)*g '(t)

i tried to take the derivative of a(t) and solve for both f'(t) and g'(t)

1 = f(t)^2 + g(t)^2

0 = 2*f(t)*f'(t) + 2*g(t)*g'(t)

i treated this like one big equation and solved each for g'(t) and f'(t)

f ' (t) = [-g(t)*g ' (t)]/ f(t)

g ' (t) = [-f(t)*f ' (t)]/ g(t)

when i carry out the dot product i still dont get zero, i need some advice, am i even on the right track.

the only other way i could think of was to setting each component equal to zero to solve for the derivative of the functions, but i did not know if this was mathematically legal

ex:

2*g(t)*g'(t) = 0

g'(t) = 0

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Help with a vector proof about perpedndicular unit vectors

**Physics Forums | Science Articles, Homework Help, Discussion**