Help with coordinate transformation problem

Click For Summary
The discussion revolves around deriving relations for elliptical cylindrical coordinates and verifying specific equations related to coordinate transformations. The user initially struggles with the transformation equations and the calculation of the metric coefficients, particularly h_u and h_v. They express confusion over reaching the expected results and seek clarification on potential missing identities. After receiving guidance on hyperbolic identities, they successfully derive the correct expressions for h_u and h_v. The conversation highlights the importance of understanding both trigonometric and hyperbolic identities in coordinate transformations.
xiphius75
Messages
2
Reaction score
0

Homework Statement



For elliptical cylindrical coordinates:

x = a * cosh (u) * cos (v)
y = a * sinh (u) * sin (v)
z = z

Derive the relations analogous to those of Equations (168b-e) for circular cylindrical coordinates. In particular, verify that

h_u = h_v = a * sqrt(cosh^2 (u) - cos^2 (v))
h_z = 1

u_1 = {[sinh (u) * cos (v)](i) + [cosh (u) * sin (v)](j)} / sqrt(cosh^2 (u) - cos^2 (v))
u_2 = {[cosh (u) * sin (v)](-i) + [sinh (u) * cos (v)](j)} / sqrt(cosh^2 (u) - cos^2 (v))

Homework Equations



From the book:
h_u = magnitude( dr/du_1)
and similarly for h_v and h_z

U_u = h_u * u_u



The Attempt at a Solution



Ok, so I think I am either getting confused between u's or am missing some vital trig identity.
From the equations given for the x,y and z coordinates, I get that the new relevant variables are u, v and z. So the position vector for the coordinate system can be written as:

r = (a * cosh (u) * cos (v)) + (a * sinh (u) * sin (v))[j] + z[k]

So, from here I can get:

u_u = (dr/du_u) = (a * sinh (u) * cos (v)) + (a * cosh (u) * sin (v))[j] + 0[k]
u_v = (dr/du_v) = (-a * cosh (u) * sin (v)) + (a * sinh (u) * cos (v))[j] + 0[k]
u_z = (dr/du_z) = 0 + 0[j] + 1[k]

from here, it follows from the formulas in the book that:

h_u = magnitude(dr/du_u) = sqrt [(a * sinh (u) * cos (v))^2 + (a * cosh (u) * sin (v))^2 + 0^2]

=a * sqrt[sinh^2 (u) cos^2 (v) +cosh^2 (u) sin^2 (v)]

This is as far as I can simplify it, and I do not know how they are getting their answer of a * sqrt(cosh^2 (u) - cos^2 (v)), unless there is some identity that I am unaware of or I screwed something up somewhere along the line. Any ideas or insight from someone who has done coordinate transformations before?
 
Physics news on Phys.org
You might find the next identities helpful:
sin^2=1-cos^2

sinh^2 = cosh^2 -1
 
That helped greatly! Thanks! I was aware of the sin - cos identity, but had never been taught the hyperbolic identities. With those I easily get the answer they give.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
9
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
8
Views
1K