MHB Help with Diagonal Matrix for T: R2 → R2

AI Thread Summary
To find a diagonal matrix representation for the transformation T: R2 → R2 defined by T(x, y) = (6x + 3y, 2x + y), the matrix A is established as A = (6 3; 2 1). The eigenvalues are calculated to be λ = 7 and λ = 0, indicating that T is diagonalizable over R. The corresponding eigenspaces yield the bases B7 = {(3, 1)^t} and B0 = {(-1, 2)^t}. Thus, the overall basis B = {(3, 1)^t, (-1, 2)^t} allows the matrix for T relative to B to be represented as D = (7 0; 0 0).
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
I quote a question from Yahoo! Answers

Find a basis B for the domain of T such that the matrix for T relative to B is diagonal.
T: R2 → R2: T(x, y) = (6x + 3y, 2x + y)
Not sure where to even start with this one.

I have given a link to the topic there so the OP can see my response.
 
Mathematics news on Phys.org
We can express $T \begin{pmatrix}{x}\\{y}\end{pmatrix}=A \begin{pmatrix}{x}\\{y}\end{pmatrix}$ with $A=\begin{pmatrix}{6}&{3}\\{2}&{1}\end{pmatrix}$. Eigenvalues of $T$: $$\det (A-\lambda I)=\lambda^2-(\mbox{trace }A)\lambda+\det A=\lambda^2-7\lambda=0\Leftrightarrow \lambda=7\vee \lambda=0$$ both real and simple, so $T$ is diagonalizable over $\mathbb{R}$. The eigenspaces are: $$\ker (A-7I)\equiv\left \{ \begin{matrix}-x+3y=0\\ 2x-6y=0\end{matrix}\right.\;,\quad \ker (A-0I)\equiv\left \{ \begin{matrix}6x+3y=0\\ 2x+y=0\end{matrix}\right.$$ with respective basis $B_{7}=\{(3,1)^t\}$ and $B_{0}=\{(-1,2)^t\}$. As a consequence, $B=\{(3,1)^t,(-1,2)^t\}$ is a basis of eigenvectors for $\mathbb{R}^2$ and the matrix for $T$ relative to $B$ is $D=\begin{pmatrix}{7}&{0}\\{0}&{0}\end{pmatrix}.$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top