- #1

- 40

- 0

## Homework Statement

[itex]\frac{dy}{dx}[/itex]=3y f(2)=-1

and

[itex]\frac{dy}{dx}[/itex]=e[itex]^{y}[/itex]x when x=-2 y=-ln(3)

I'm in Calc AB By the way, so please do not try to show me methods that are too advanced.

## Homework Equations

There are no relevant equations?

## The Attempt at a Solution

My attempt at the first solution is

[itex]\int[/itex][itex]\frac{dy}{3y}[/itex]=[itex]\int[/itex]dx

[itex]\frac{ln(y)}{3}[/itex]=x+c

y=e[itex]^{3x+3c}[/itex]

ln(-1)=6+3c

You can't have that Natural Log though.. So I 'm stuck.

My attempt at the second solution is..

∫[itex]\frac{dy}{e^{y}}[/itex]=∫x dx

-[itex]\frac{1}{e^{y}}[/itex]=[itex]\frac{x^{2}}{2}[/itex]+c

-ln(e[itex]^{-y}[/itex])=e[itex]^{}\frac{x^{2}+2c}{2}[/itex]

-ln(3)=e[itex]^{}\frac{4+2c}{2}[/itex]

Last edited: