- #1
E'lir Kramer
- 74
- 0
Mod note: post split of from this thread: https://www.physicsforums.com/showthread.php?p=4187253
Hi. I know this thread hasn't been active in a year, but it still seems the most appropriate place to post.
On the advice in this thread, I've bought Michael Spivak's book, Calculus, 4th ed.
Now I am working through the book, and I'm hoping for some advice on how to use the book to teach myself mathematics. In fact, it's a question about how to learn mathematics.
I am trying to learn calculus from first principles. As a software engineer, I've used the tools of calculus without really (or only briefly) understanding the underlying principles of it. As I mature professionally and intellectually, I am more and more interested in math for math's sake. And I find it much easier now, after five years of heavy programming, to think logically and prove theorems.
So I want to learn math - calculus, set theory, and algebra. Spivak's book seemed like the best one for a person in my situation, and the first 26 pages, which have taken me almost 16 hours to get through, have been fascinating.
Some of these problems in the back of the chapter, though, are really hard. For instance, 3(d) is "Prove the binomial theorem".
He's pointed towards me the answer by previously asking me to prove that (n+1 choose k) = (n choose k-1) + (n choose k). And many of the proofs he's been asking for are inductive, and this one will probably also be inductive. n=1 or n=0 is an easy inductive case, and then I need only prove that if some the binomial theorem is true for some number k ∈ N, then it will also be true for k+1.
With (a + b)n * (a + b) = (a+b) n+1, I know I'm on the right path to the solution. With a good night's sleep and another hour of work tomorrow morning, I'm sure that I'll crack it, and I'll be gratified to do so.
But if I were to solve every problem in this book, it might take me a year. Or maybe more than that. Suppose that my goal is to learn - deeply, and durably - the mathematics of calculus in the least amount of time. Do you think that working through every Spivak problem would be the best use of my time? Or is this too masochistic? Should I struggle for a while, and then give up? How long is "a while"? What light can guide my self-study approach?
Mason
Hi. I know this thread hasn't been active in a year, but it still seems the most appropriate place to post.
On the advice in this thread, I've bought Michael Spivak's book, Calculus, 4th ed.
Now I am working through the book, and I'm hoping for some advice on how to use the book to teach myself mathematics. In fact, it's a question about how to learn mathematics.
I am trying to learn calculus from first principles. As a software engineer, I've used the tools of calculus without really (or only briefly) understanding the underlying principles of it. As I mature professionally and intellectually, I am more and more interested in math for math's sake. And I find it much easier now, after five years of heavy programming, to think logically and prove theorems.
So I want to learn math - calculus, set theory, and algebra. Spivak's book seemed like the best one for a person in my situation, and the first 26 pages, which have taken me almost 16 hours to get through, have been fascinating.
Some of these problems in the back of the chapter, though, are really hard. For instance, 3(d) is "Prove the binomial theorem".
He's pointed towards me the answer by previously asking me to prove that (n+1 choose k) = (n choose k-1) + (n choose k). And many of the proofs he's been asking for are inductive, and this one will probably also be inductive. n=1 or n=0 is an easy inductive case, and then I need only prove that if some the binomial theorem is true for some number k ∈ N, then it will also be true for k+1.
With (a + b)n * (a + b) = (a+b) n+1, I know I'm on the right path to the solution. With a good night's sleep and another hour of work tomorrow morning, I'm sure that I'll crack it, and I'll be gratified to do so.
But if I were to solve every problem in this book, it might take me a year. Or maybe more than that. Suppose that my goal is to learn - deeply, and durably - the mathematics of calculus in the least amount of time. Do you think that working through every Spivak problem would be the best use of my time? Or is this too masochistic? Should I struggle for a while, and then give up? How long is "a while"? What light can guide my self-study approach?
Mason
Last edited by a moderator: