pyroknife
- 611
- 4
Hmmm, I said this earlier, but I tried it and it didn't work. Let me write it out.Nathanael said:Well I kind of did mean that, because as it turns out ##J_kA = J_k^TAJ_k= \Delta_k^{mxm}##But wait! There's one last step in my proof, which is to find a Jk such that ##J_k^TAJ_k= \Delta_k^{mxm}##
I'll just say it; Jk is the mxm matrix with the kxk identity matrix in the top left and zeros everywhere else. The transpose of Jk is still Jk, and multiplying A by Jk on either the left or right (or both) gives ##\Delta_k^{mxm}##.
Let's just assume ##A =
\begin{bmatrix}
1 & 1 & 1\\
1& 1 & 1\\
1& 1 & 1\\
\end{bmatrix}##
so ##\Delta_k^{mxm} =
\begin{bmatrix}
1 & 1 & 0\\
1& 1 & 0\\
0& 0 & 0\\
\end{bmatrix}##
But
##\begin{bmatrix}
1 & 0 & 0\\
0& 1 & 0\\
0& 0 & 0\\
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1\\
1& 1 & 1\\
1& 1 & 1\\
\end{bmatrix}
\neq \Delta_k^{mxm}##
But if we multiply this matrix on both sides, then we get ##\Delta_k^{mxm}##. So I don't think you can just multiply on one side?
So ##J_k A \neq J_k^T A J_k##
Luckily it doesn't change the proof.