Hermitian, positive definite matrices

Click For Summary
The discussion revolves around proving that if a Hermitian matrix A has positive definite eigenvalues, then any leading principal submatrix Δ_k is also positive definite. The initial proof establishes that A's positive definiteness implies that for any vector x, x^T A x > 0. Participants explore how to show that this holds for the submatrix Δ_k by considering its quadratic form and the relationship to A. They discuss the implications of modifying A by adding zero rows and columns, ultimately concluding that the positive definiteness of A guarantees the same for Δ_k. The conversation emphasizes understanding the connection between the original matrix and its submatrices in terms of positive definiteness.
  • #31
Nathanael said:
Well I kind of did mean that, because as it turns out ##J_kA = J_k^TAJ_k= \Delta_k^{mxm}##But wait! There's one last step in my proof, which is to find a Jk such that ##J_k^TAJ_k= \Delta_k^{mxm}##

I'll just say it; Jk is the mxm matrix with the kxk identity matrix in the top left and zeros everywhere else. The transpose of Jk is still Jk, and multiplying A by Jk on either the left or right (or both) gives ##\Delta_k^{mxm}##.
Hmmm, I said this earlier, but I tried it and it didn't work. Let me write it out.

Let's just assume ##A =
\begin{bmatrix}
1 & 1 & 1\\
1& 1 & 1\\
1& 1 & 1\\
\end{bmatrix}##

so ##\Delta_k^{mxm} =
\begin{bmatrix}
1 & 1 & 0\\
1& 1 & 0\\
0& 0 & 0\\
\end{bmatrix}##

But
##\begin{bmatrix}
1 & 0 & 0\\
0& 1 & 0\\
0& 0 & 0\\
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1\\
1& 1 & 1\\
1& 1 & 1\\
\end{bmatrix}
\neq \Delta_k^{mxm}##

But if we multiply this matrix on both sides, then we get ##\Delta_k^{mxm}##. So I don't think you can just multiply on one side?
So ##J_k A \neq J_k^T A J_k##
 
  • Like
Likes Nathanael
Physics news on Phys.org
  • #32
pyroknife said:
Hmmm, I said this earlier, but I tried it and it didn't work. Let me write it out.
...
But if we multiply this matrix on both sides, then we get ##\Delta_k^{mxm}##. So I don't think you can just multiply on one side?
So ##J_k A \neq J_k^T A J_k##
Oh darn! You're right! Multiplying on the left JkA says "get rid of the last m-k rows" and multiplying on the right AJk says "get rid of the last m-k columns." We need to do both in order to get ##\Delta_k^{mxm}##! Sorry for any confusion, I was looking at that wrongly.

o0) Luckily it doesn't change the proof.
 
  • Like
Likes pyroknife

Similar threads

Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
11K
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K