MHB High school inequality find b in √[(x−1)^2+(y−2)^2]<b⟹|xy2−4|<a

solakis1
Messages
407
Reaction score
0
given a>0 find b>0 such that:
$$\sqrt{(x-1)^2+(y-2)^2}<b\Longrightarrow |xy^2-4|<a$$
 
Mathematics news on Phys.org
My attempt:
The $x$ and $y$ values are confined to the area of an open disc of radius $b$ with center at $(1,2)$.

The largest allowed $y$-variation ($y_{max}-y_{min} = 2b$) happens for $x=1$.

The largest allowed $x$-variation happens for $y=2$.

Hence, we have the relations:

$x=1$:

$|y-2| < b\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$(1).

and $|y^2-4| < a\;\;\;\;\;\;\;$(2).$y=2$:

$|x-1| < b\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$(3).

and $|4x-4| < a$ or $|x-1| < \frac{a}{4}\;\;$(4).(2). Implies: $\sqrt{4-a}<y <\sqrt{4+a}$. Note, that $a \le 4$. (There is a symmetric case for $y < 0$, which is omitted).

(1). Implies: $2-b < y < 2+b$.

Now, $a >0$ is given, therefore:

$2+b \le \sqrt{4+a}$ and $2-b \ge \sqrt{4-a} $

$\Rightarrow b \le 2- \sqrt{4-a}$ and $b \leq \sqrt{4+a}-2$.

We need to choose the smaller of the two, which is the latter: $\sqrt{4+a}-2$. This can be seen e.g. from their Taylor expansion:

\[2- \sqrt{4-a} \approx \frac{a}{4}+\frac{a^2}{64}+O(a^3) \\\\ \sqrt{4+a}-2 \approx \frac{a}{4}-\frac{a^2}{64}+O(a^3)\]

From (3) and (4) we immediately get: $b \le \frac{a}{4} $.

The difference between the two possible boundaries - according to the Taylor expansion - is:

\[\sqrt{4+a}-2 -\frac{a}{4} \approx -\frac{a^2}{64}+O(a^3) < 0\]Thus, $b =\sqrt{4+a}-2$ is the only possible choice. The largest possible $b$-value is obtained when $a = 4$:
$b = \sqrt{8}-2 \approx 0.8284$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
969
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K