MHB High school inequality find b in √[(x−1)^2+(y−2)^2]<b⟹|xy2−4|<a

solakis1
Messages
407
Reaction score
0
given a>0 find b>0 such that:
$$\sqrt{(x-1)^2+(y-2)^2}<b\Longrightarrow |xy^2-4|<a$$
 
Mathematics news on Phys.org
My attempt:
The $x$ and $y$ values are confined to the area of an open disc of radius $b$ with center at $(1,2)$.

The largest allowed $y$-variation ($y_{max}-y_{min} = 2b$) happens for $x=1$.

The largest allowed $x$-variation happens for $y=2$.

Hence, we have the relations:

$x=1$:

$|y-2| < b\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$(1).

and $|y^2-4| < a\;\;\;\;\;\;\;$(2).$y=2$:

$|x-1| < b\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;$(3).

and $|4x-4| < a$ or $|x-1| < \frac{a}{4}\;\;$(4).(2). Implies: $\sqrt{4-a}<y <\sqrt{4+a}$. Note, that $a \le 4$. (There is a symmetric case for $y < 0$, which is omitted).

(1). Implies: $2-b < y < 2+b$.

Now, $a >0$ is given, therefore:

$2+b \le \sqrt{4+a}$ and $2-b \ge \sqrt{4-a} $

$\Rightarrow b \le 2- \sqrt{4-a}$ and $b \leq \sqrt{4+a}-2$.

We need to choose the smaller of the two, which is the latter: $\sqrt{4+a}-2$. This can be seen e.g. from their Taylor expansion:

\[2- \sqrt{4-a} \approx \frac{a}{4}+\frac{a^2}{64}+O(a^3) \\\\ \sqrt{4+a}-2 \approx \frac{a}{4}-\frac{a^2}{64}+O(a^3)\]

From (3) and (4) we immediately get: $b \le \frac{a}{4} $.

The difference between the two possible boundaries - according to the Taylor expansion - is:

\[\sqrt{4+a}-2 -\frac{a}{4} \approx -\frac{a^2}{64}+O(a^3) < 0\]Thus, $b =\sqrt{4+a}-2$ is the only possible choice. The largest possible $b$-value is obtained when $a = 4$:
$b = \sqrt{8}-2 \approx 0.8284$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top