- #1
- 803
- 464
Say we start with a wavefunction inside a harmonic potential well, such that the initial ##\psi(x)## is confined to a central region much smaller than the ground state (hence ##V(x)\approx0##).. and the expectation Kinetic Energy is equal to an energy eignenvalue ##E_n## of the system.
Starting from here, will it ultimately converge over time into an energy eigenstate corresponding to ##E_n## ... OR.. will it slosh around forever in a complicated way?
Starting from here, will it ultimately converge over time into an energy eigenstate corresponding to ##E_n## ... OR.. will it slosh around forever in a complicated way?