Highly localized initial psi in harmonic well

In summary: So, in summary, the wave function will slosh around forever in a complicated way, as it is composed of a linear combination of energy eigenfunctions and can never converge to a single energy eigenstate.
  • #1
Say we start with a wavefunction inside a harmonic potential well, such that the initial ##\psi(x)## is confined to a central region much smaller than the ground state (hence ##V(x)\approx0##).. and the expectation Kinetic Energy is equal to an energy eignenvalue ##E_n## of the system.

Starting from here, will it ultimately converge over time into an energy eigenstate corresponding to ##E_n## ... OR.. will it slosh around forever in a complicated way?
 
Physics news on Phys.org
  • #2
It will slosh around forever in a complicated way. You can just solve the equation of motion by using the well-known energy-eigenstates. Given the wave function ##\psi(t,\vec{x})## at ##t=0## you define the corresponding coefficients
$$\psi_j=\int_{-\infty}^{\infty} u_j^*(x) \psi(0,\vec{x}),$$
where ##u_j(x)## is the energy eigenfunction with eigenvalue ##E_j=(j+1/2)\omega##, ##j \in \{0,1,2,\ldots \}##. Then the wave function at any later time is given by
$$\psi(t,x)=\sum_{j=0}^{\infty} \exp(-\mathrm{i} E_j t) \psi_j u_j(x).$$
This immediately shows that you never converge to an energy eigenfunction but that for any time all components of the initial wave function stay involved. This must be so, because only the energy eigenfunctions represent stationary states, i.e., if initially you don't have the system prepared in an energy eigenfunction the state can never become an energy eigenstate later.
 
  • #4
To paraphrase vanhees' answer more abstractly, the Schrödinger equation is linear and unitary (the eigenvalues are just phases) so any nontrivial linear combination of its eigenfunctions will never converge to a single eigenfunction.
 

Suggested for: Highly localized initial psi in harmonic well

Replies
9
Views
539
Replies
2
Views
556
Replies
2
Views
698
Replies
85
Views
2K
Replies
4
Views
656
Replies
26
Views
1K
Replies
1
Views
715
Replies
4
Views
482
Back
Top