Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homology of Disjoint Union: Formalizing the Result.

  1. Aug 12, 2011 #1
    Hi, All:

    I am trying to understand the formal machinery leading to a proof that the homology of the disjoint union of spaces is the disjoint (group) sum of the homologies of the respective spaces; the idea seems clear: if a cycle bounds in a given space Xi, then it will bound in the disjoint sum ( but it will bound only in Xi itself), and, conversely, a trivial, bounding cycle will also be trivial in the disjoint union. Still, I have been told--very non-specifically--that a formal proof needs a lot of machinery.

    I guess part of the problem is that we may have more than countably-many possible spaces, so standard induction may not work; we may have to somehow use transfinite induction ( so it starts getting ugly here ), and maybe inverse limits (uglier), etc.

    Anyone know what a more formal proof would entail?

    Thanks.
     
  2. jcsd
  3. Aug 12, 2011 #2

    quasar987

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Are are no complications... See Hatcher Proposition 2.6 for instance.
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook