Hi, All:(adsbygoogle = window.adsbygoogle || []).push({});

I am trying to understand the formal machinery leading to a proof that the homology of the disjoint union of spaces is the disjoint (group) sum of the homologies of the respective spaces; the idea seems clear: if a cycle bounds in a given space Xi, then it will bound in the disjoint sum ( but it will bound only in Xi itself), and, conversely, a trivial, bounding cycle will also be trivial in the disjoint union. Still, I have been told--very non-specifically--that a formal proof needs a lot of machinery.

I guess part of the problem is that we may have more than countably-many possible spaces, so standard induction may not work; we may have to somehow use transfinite induction ( so it starts getting ugly here ), and maybe inverse limits (uglier), etc.

Anyone know what a more formal proof would entail?

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homology of Disjoint Union: Formalizing the Result.

**Physics Forums | Science Articles, Homework Help, Discussion**