- #1
ddo
- 3
- 0
Homework Statement
I'm trying to calculate singular homology groups of the torus and Klein's bottle using the Mayer-Vietoris sequence.
The Attempt at a Solution
I represent both spaces as a rectangle with identified edges. Then I take the sets:
U=rectangle without the boundary
V=rectangle without the middlepoint
so U is contractible thus H_n(U)=0 for n>0, H_0(U)=Z
V=S1vS1 so H_1(V)=ZxZ, H_n(V)=0
and their intersection = S1, H_n(S1)=0, H_1(S1)=Z, H_0(S1)=Z
Now from the M-V sequence for n>2 we get an exact sequence
0->0x0->H_n(T)->0, so H_n(T)=0.
But I don't know what to do for smaller n...
Please help!