Hooke's law for vibrating massive spring

Click For Summary

Discussion Overview

The discussion centers on the applicability of Hooke's law to a vibrating massive spring system, exploring theoretical implications and calculations involving tension, mass, and energy conservation. Participants analyze the relationship between the mass of the spring and the block, and how this affects the tension in the spring during oscillation.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant questions whether Hooke's law remains valid for a vibrating massive spring, noting that their calculations suggest tension depends on both elongation and acceleration.
  • Another participant challenges the assumption that neglecting the mass of the spring is valid when modeling the system, asking for clarification on what physical quantities remain equivalent.
  • A later reply provides a detailed derivation of kinetic energy for the spring, concluding that the system can be modeled as a massless spring with an adjusted mass for the block, but does not assert this as a definitive conclusion.
  • Some participants emphasize that the relationship for potential energy is contingent on the spring obeying Hooke's law, indicating a limitation in the analysis.

Areas of Agreement / Disagreement

Participants express differing views on the validity of Hooke's law in this context, with no consensus reached on whether the mass of the spring can be neglected or how it affects the system's dynamics.

Contextual Notes

Limitations include assumptions regarding the mass distribution of the spring, the conditions under which Hooke's law applies, and the implications of neglecting the spring's mass in calculations.

bgq
Messages
162
Reaction score
0
Hello,

Just for curiosity...
Is Hooke's law valid for a vibrating massive spring ?
I have done some calculations using both Newton's 2nd Law and the conservation of energy to a horizontal swinging spring connected to a small block in the absence of any friction. I have found that the tension of the spring depends on both the elongation and the acceleration.
However, the acceleration is multiplied by the mass of the spring, so if the spring is massless, the tension is reduced to T = kx.

Here is the outline of my work:

>> I have written the expression of the mechanical energy of the system (block-spring), and then set the derivative to zero. I concluded at the end that I can neglect the mass of the spring if I assume the mass of the block is M + m/3 where m is the mass of the spring and M is the mass of the block. I checked this out on the internet, and I found this conclusion true.

>> Next I have applied Newton's 2nd Law:
For a massless spring: T = Ma
For a massive spring, the tension is T':
T' = (M + m/3)a (Neglect the mass of the spring and add its third to the block)
T' = Ma + ma/3
T' = T + ma/3
T' = -kx + ma/3 (Note that the tension depends on the acceleration).

Is my work correct?

Thank you.
 
Physics news on Phys.org
Hooks Law is an idealization - it is a useful approximation for many real springs and spring-like situations. So the short answer is "no" - it is not strictly true for any real-World situation.

I can neglect the mass of the spring if I assume the mass of the block is M + m/3 where m is the mass of the spring and M is the mass of the block.
You are saying that you can neglect the mass of the spring if M = M + m/3 ??
Do you mean that if you have a spring mass m and block mass M system, you can model it by an ideal massless spring and a block of mass M+m/3 and get physically the same result for something? (What is it that needs to be the same? Acceleration? The relationship between the restoring force and the extension?)

I checked this out on the internet, and I found this conclusion true.
If it is on the internet then it must be true!
(But JIC: please provide the URL.)

Is my work correct?
Can't tell. You need to be more careful.
 
I don't remember the URL, but here is my work.

Let M be the mass of the spring, L is its length at any time t, and V is the speed of its free end at the time t. Let x be the distance from the fixed end of the spring to any infinitesimal part of the spring, and v is the speed of this part. Let λ be the linear mass density of the spring.

Assume that the speed of any infinitesimal part of the spring is proportion to x, then v = xV/L.

The kinetic energy of an infinitesimal part is: dK = 1/2 dm v2 = 1/2 λdx (xV/L)2 = 1/2 M/L (V/L)2 x2dx
The kinetic energy of the spring is:
K = ∫dK (from 0 to L) = (MV2)/(2L3) ∫x2dx (from 0 to L) = (MV2)/(2L3) [x3/3] (0 to L) = 1/6 M V2

Now the total kinetic energy of the system spring-block: K = 1/6 M V2 + 1/2 m V2 = 1/2(m+M/3)V2 which is totally equivalent to consider the spring massless but adding the third of its mass of the block.

In what follows x is the elongation (or compression) of the spring.

The total mechanical energy of the system Spring-Block is: E = K + U = 1/2(m+M/3)V2 + 1/2kx2

Since the mechanical energy is constant then its derivative is zero, so

(m + M/3) x'' + kx = 0 then mx'' + Mx''/3 + kx = 0
-Mx''/3 - kx = mx''
-Ma/3 - kx = ma
The right side is the mass multiplied by the acceleration of the block, so the left side should equal to the net external force acting on the block which is the tension of the spring.

Therefore the magnitude of the tension of the spring is T = - kx - Ma/3.
 
Last edited:
The relation for U is only if the spring obeys Hooks Law.
 
  • Like
Likes   Reactions: bgq
Simon Bridge said:
The relation for U is only if the spring obeys Hooks Law.

Oh, I missed this point. Thanks a lot. I will try to do it again.
 
Good luck.
 

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
3K
  • · Replies 24 ·
Replies
24
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K