- #1
haushofer
Science Advisor
- 2,731
- 1,200
- TL;DR Summary
- fed up with phenomenological explanation of mirrors, need fundamental explanations
Dear all,
in the context of my teaching I was wondering what exactly the explanation is of how a mirror works at the atomic level. Apparently, the fact that reflecting materials are often also good conductors and hence big energy bands helps reflecting the photons. Does someone know a nice set of lecture notes where this is explained? So, questions like:
* how does the elecotromagnetic field / photons interact with the reflecting material as a solid state as a whole
* how exactly does the ability to reflect depend on the atomic structure of the material
* how can the law of reflection be explained within the "atomic paradigm" (instead of the maxwell- field approach)
* how does solid state physics explain the difference between reflecting materials and non-reflecting materials?
* do the photons interact with the free electrons of the material, or also with the bound ones from the atoms?
Well, hopefully you get the idea of my question. Of course, answers will also be appreciated :) Greetings!
sidenote: I'm a theoretical physicist who has forgotten most of his solid state physics...
in the context of my teaching I was wondering what exactly the explanation is of how a mirror works at the atomic level. Apparently, the fact that reflecting materials are often also good conductors and hence big energy bands helps reflecting the photons. Does someone know a nice set of lecture notes where this is explained? So, questions like:
* how does the elecotromagnetic field / photons interact with the reflecting material as a solid state as a whole
* how exactly does the ability to reflect depend on the atomic structure of the material
* how can the law of reflection be explained within the "atomic paradigm" (instead of the maxwell- field approach)
* how does solid state physics explain the difference between reflecting materials and non-reflecting materials?
* do the photons interact with the free electrons of the material, or also with the bound ones from the atoms?
Well, hopefully you get the idea of my question. Of course, answers will also be appreciated :) Greetings!
sidenote: I'm a theoretical physicist who has forgotten most of his solid state physics...