- #1
dreamzndigita
- 3
- 0
Good afternoon everyone. I hope everyone is enjoying the holidays.
I'm interested in studying the crystallization kinetics of several different calcium phosphate phases nucleating and growing on polymeric scaffold materials. The scaffolds are meant for use in different tissue engineering applications, specifically bone regeneration. I have made non-porous discs of poly(lactic acid) filled with a bioactive filler. The discs are immersed in simulated body fluid (SBF) which is simply water prepared with ion concentrations like those found in the human body (Ca, Na, etc.). Different calcium phosphate phases grow on the surface of the scaffold at varying rates depending on a variety of system parameters (filler loading, polymer matrix material, SBF ion concentrations, surface groups, etc).
I am trying to investigate those parameters by coorelating them to the crystallization kinetics of the different phases. I can target a specific phase of interest (the one argued to be most influential for stem cell differentiation) and work with that, but I'm encountering some problems. My main issue is that the mineral phases grow very unevenly on the surface and it is difficult to pick samples that would produce reasonable quantitative results. How would I test the crystal growth on surface over time without having to scrape off all the mineral and start over? I am looking for the mass of each (or one) phase accumulated on the surface over time without destroying each sample every time I have to take a measurement.
I am new to crystallization studies of this nature. I have some background on classic crystallization theories in general, but I've never experimentally worked on any. Any suggestions on how I should proceed? What experimental methods should I look into?
Any input is much appreciated. I apologize if I missed some important details in an attempt to keep it short. Just let me know.
Thanks!
I'm interested in studying the crystallization kinetics of several different calcium phosphate phases nucleating and growing on polymeric scaffold materials. The scaffolds are meant for use in different tissue engineering applications, specifically bone regeneration. I have made non-porous discs of poly(lactic acid) filled with a bioactive filler. The discs are immersed in simulated body fluid (SBF) which is simply water prepared with ion concentrations like those found in the human body (Ca, Na, etc.). Different calcium phosphate phases grow on the surface of the scaffold at varying rates depending on a variety of system parameters (filler loading, polymer matrix material, SBF ion concentrations, surface groups, etc).
I am trying to investigate those parameters by coorelating them to the crystallization kinetics of the different phases. I can target a specific phase of interest (the one argued to be most influential for stem cell differentiation) and work with that, but I'm encountering some problems. My main issue is that the mineral phases grow very unevenly on the surface and it is difficult to pick samples that would produce reasonable quantitative results. How would I test the crystal growth on surface over time without having to scrape off all the mineral and start over? I am looking for the mass of each (or one) phase accumulated on the surface over time without destroying each sample every time I have to take a measurement.
I am new to crystallization studies of this nature. I have some background on classic crystallization theories in general, but I've never experimentally worked on any. Any suggestions on how I should proceed? What experimental methods should I look into?
Any input is much appreciated. I apologize if I missed some important details in an attempt to keep it short. Just let me know.
Thanks!