I How can Euler angles be visualized using a polar plot?

AI Thread Summary
The discussion focuses on visualizing Euler angles using a polar plot, specifically when projecting an ellipsoid onto the xy-plane. The user describes a process of rotating the ellipsoid around the z-axis and then the y-axis, resulting in a function for the Euler angle gamma based on angles alpha and beta. They express a preference for a stereographic net for visualization but encounter challenges due to the mapping of points at beta=0. Ultimately, the user proposes a solution by reformulating the rotation matrices, allowing them to plot the combined angle of alpha and gamma against the new rotation axis orientation and angle beta on a polar plot. This approach aims to effectively visualize the relationship between the Euler angles.
DrDu
Science Advisor
Messages
6,405
Reaction score
1,002
Dear Forum,

say I am projecting an ellipsoid along the z-axis to the xy-Plane. The resulting ellipsis is rotated around the z-axis by the angle gamma until the principal axes coincide with the x- and y axis.
Now before projecting, I rotate the ellipsoid first around the z- and then around the y-axis by angles alpha and beta, respectively.
In effect, I get the Euler angle gamma as a function of alpha and beta and I would like to visualise this. Of course, I could plot gamma over alpha and beta, but intuitively, I would prefer to plot over a stereographic net with angular coordinates alpha and beta. However, In a stereographic projection, all points with different angle alpha at beta=0 are mapped to one point, but gamma becomes proportional to alpha, so this does not work.
I suppose this kind of problem of visualising Euler angles is not new. Do you have any ideas?
 
Mathematics news on Phys.org
I think I solved my problem: Writing ##R_z(\alpha)R_y(\beta)R_z(\gamma)## as ## R_z(\alpha)R_y(\beta)R_z(-\alpha)R_z(\gamma+\alpha)=R_{y'(\alpha)}(\beta) R_z (\gamma+\alpha)##, I can plot ##\alpha+\gamma## as a function of the orientation of the new rotation axis ##y'(\alpha)## and the rotation angle ##\beta## on a polar plot.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top