New article out that perhaps reads on this subject:
A Spatially-VSL Gravity Model with 1-PN Limit of GRT
Jan Broekaert
In the static field configuration, a spatially-Variable Speed of Light (VSL) scalar gravity model with Lorentz-Poincaré interpretation was shown to reproduce the phenomenology implied by the Schwarzschild metric. In the present development, we effectively cover configurations with source kinematics due to an induced sweep velocity field w. The scalar-vector model now provides a Hamiltonian description for particles and photons in full accordance with the first Post-Newtonian (1-PN) approximation of General Relativity Theory (GRT). This result requires the validity of Poincaré’s Principle of Relativity, i.e. the unobservability of ‘preferred’ frame movement. Poincaré’s principle fixes the amplitude of the sweep velocity field of the moving source, or equivalently the ‘vector potential’ ξ of GRT (e.g.; S. Weinberg, Gravitation and cosmology, [1972]), and provides the correct 1-PN limit of GRT. The implementation of this principle requires acceleration transformations derived from gravitationally modified Lorentz transformations. A comparison with the acceleration transformation in GRT is done. The present scope of the model is limited to weak-field gravitation without retardation and with gravitating test particles. In onclusion the model’s merits in terms of a simpler space, time and gravitation ontology—in terms of a Lorentz-Poincaré-type interpretation—are explained (e.g. for ‘frame dragging’, ‘harmonic coordinate condition’).
http://www.springerlink.com/content/b3758t680gj383j8/
Back on the first of the year, Foundations of Physics (the above journal) picked up a new editor, Gerardus 't Hooft, who writes:
During my first couple of months in this office, it became clear that fundamental questions in physics and philosophy also attract the interest of many laymen physicists.
We receive numerous submissions from people who venture to attack the most basic premises of theories such as Special Relativity, but instead only succeed in displaying a lack of professional insight in how a physical theory is constructed. I suspect that some of these people may have been working somewhere in an attic, deprived from daylight for decades, determined only to reemerge with a Theory of Everything in their hands. Even though they may be very sincere, we have to disappoint such authors. New insights are gained only by intense interactions with professionals all over the globe, and by solidly familiarizing oneself with their findings, and we must make a selection from only those papers whose authors have a solid understanding of the topics they are discussing.
Fortunately they also submit their work, and their clever inventiveness continues to surprise us.
...
I hope to receive your submissions. Acceptation of a paper may not necessarily mean that all referees agree with everything, but rather that the issues put forward by the author were considered to be of sufficient interest to our readership, and the exposition was clear enough that our readers, whom we assume to be competent enough, can judge for themselves.
...
http://www.springer.com/physics/journal/10701