MHB How Can I Find the Equation of the Dotted Tangent Line of a Circle?

Yankel
Messages
390
Reaction score
0
Dear all,

Attached is a picture of a circle.

View attachment 9133

The lower tangent line is y=0.5x. The center of the circle is M(4,7) while the point A is (3,6).

I found the equation of the circle, it is:

$(x-4)^{2}+(y-7)^{2}=20$

and I wish to find the dotted tangent line. I know that it is parallel to the lower one, therefore, the slope is the same. I can't find the tangent point.

Can you give me a hint please ?
 

Attachments

  • Capture.PNG
    Capture.PNG
    7.3 KB · Views: 114
Mathematics news on Phys.org
Yankel said:
Dear all,

Attached is a picture of a circle.
The lower tangent line is y=0.5x. The center of the circle is M(4,7) while the point A is (3,6).

I found the equation of the circle, it is:

$(x-4)^{2}+(y-7)^{2}=20$

and I wish to find the dotted tangent line. I know that it is parallel to the lower one, therefore, the slope is the same. I can't find the tangent point.

Can you give me a hint please ?

You know $A=(3,6)$, and a direction vector along the lower tangent line is $\langle 2,1\rangle$. Can you find a vector perpendicular to that vector and pointed upwards towards the other tangent? And make it $\sqrt{20}$ units long? Then just add its components to $(3,6)$ to get the other tangent point.

[Edit] I notice that your point A doesn't satisfy the equation of your circle, so check your work so far.
 
Last edited:
I am sorry, I did not mention this. The problem is in analytical geometry, no vectors are allowed
 
Yankel said:
I am sorry, I did not mention this. The problem is in analytical geometry, no vectors are allowed

Since the tangent line is parallel, it must be of the form $y=\frac 12 x + b$ for some constant $b$, which is also the intersection with the y-axis.

Substitute in the circle equation, which becomes a quadratic equation.
Since it is a tangent it has exactly 1 point on the circle.
This happens when the square root part of the quadratic solution is zero.
From there we can find $b$.
 
Something is wrong here. If a circle has centre at $(4,7)$ and goes through the point $A$ at $(3,6)$, then the tangent at $A$ will not go through the origin. It looks to me as though $A$ should be the point $(6,3)$ rather than $(3,6)$.
 
Hi Yankel.

As Opalg pointed out, there is a typo with the co-ordinates of the point A; it should be $(6,3)$ rather than $(3,6)$.

Let B with co-ordinates $(u,v)$ be the point opposite A on the circle. Then the line segment BA is perpendicular to the tangent line $y=\frac12x$ and so has gradient $-2$, i.e.
$$\frac{v-3}{u-6}\ =\ -2$$
from which we get
$$v\ =\ -2u+15\quad\ldots\boxed1.$$
Also $(u,v)$ lies on the circle, so
$$(u-4)^2+(v-7)^2\ =\ 20\quad\ldots\boxed2.$$
Substitute $v$ from $\boxed1$ into $\boxed2$ will give you a quadratic equation in $u$, which you can easily solve (knowing that $u=6$ is one solution).
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top