How Can I Find the Equation of the Dotted Tangent Line of a Circle?

Click For Summary
SUMMARY

The discussion focuses on finding the equation of a dotted tangent line to a circle defined by the equation $(x-4)^{2}+(y-7)^{2}=20$. The center of the circle is M(4,7), and an initial point A was incorrectly identified as (3,6) instead of the correct point (6,3). The tangent line is parallel to the line y=0.5x, and participants suggest using the properties of tangents and quadratics to derive the correct equation. The correct approach involves substituting the tangent line equation into the circle's equation to find the y-intercept.

PREREQUISITES
  • Understanding of circle equations in analytical geometry
  • Knowledge of tangent lines and their properties
  • Ability to solve quadratic equations
  • Familiarity with coordinate geometry concepts
NEXT STEPS
  • Study the derivation of tangent lines to circles in analytical geometry
  • Learn how to solve quadratic equations derived from circle equations
  • Explore the relationship between points on a circle and their tangents
  • Investigate the properties of parallel lines in coordinate geometry
USEFUL FOR

Students and educators in mathematics, particularly those focusing on analytical geometry, as well as anyone looking to deepen their understanding of tangent lines and circle equations.

Yankel
Messages
390
Reaction score
0
Dear all,

Attached is a picture of a circle.

View attachment 9133

The lower tangent line is y=0.5x. The center of the circle is M(4,7) while the point A is (3,6).

I found the equation of the circle, it is:

$(x-4)^{2}+(y-7)^{2}=20$

and I wish to find the dotted tangent line. I know that it is parallel to the lower one, therefore, the slope is the same. I can't find the tangent point.

Can you give me a hint please ?
 

Attachments

  • Capture.PNG
    Capture.PNG
    7.3 KB · Views: 125
Physics news on Phys.org
Yankel said:
Dear all,

Attached is a picture of a circle.
The lower tangent line is y=0.5x. The center of the circle is M(4,7) while the point A is (3,6).

I found the equation of the circle, it is:

$(x-4)^{2}+(y-7)^{2}=20$

and I wish to find the dotted tangent line. I know that it is parallel to the lower one, therefore, the slope is the same. I can't find the tangent point.

Can you give me a hint please ?

You know $A=(3,6)$, and a direction vector along the lower tangent line is $\langle 2,1\rangle$. Can you find a vector perpendicular to that vector and pointed upwards towards the other tangent? And make it $\sqrt{20}$ units long? Then just add its components to $(3,6)$ to get the other tangent point.

[Edit] I notice that your point A doesn't satisfy the equation of your circle, so check your work so far.
 
Last edited:
I am sorry, I did not mention this. The problem is in analytical geometry, no vectors are allowed
 
Yankel said:
I am sorry, I did not mention this. The problem is in analytical geometry, no vectors are allowed

Since the tangent line is parallel, it must be of the form $y=\frac 12 x + b$ for some constant $b$, which is also the intersection with the y-axis.

Substitute in the circle equation, which becomes a quadratic equation.
Since it is a tangent it has exactly 1 point on the circle.
This happens when the square root part of the quadratic solution is zero.
From there we can find $b$.
 
Something is wrong here. If a circle has centre at $(4,7)$ and goes through the point $A$ at $(3,6)$, then the tangent at $A$ will not go through the origin. It looks to me as though $A$ should be the point $(6,3)$ rather than $(3,6)$.
 
Hi Yankel.

As Opalg pointed out, there is a typo with the co-ordinates of the point A; it should be $(6,3)$ rather than $(3,6)$.

Let B with co-ordinates $(u,v)$ be the point opposite A on the circle. Then the line segment BA is perpendicular to the tangent line $y=\frac12x$ and so has gradient $-2$, i.e.
$$\frac{v-3}{u-6}\ =\ -2$$
from which we get
$$v\ =\ -2u+15\quad\ldots\boxed1.$$
Also $(u,v)$ lies on the circle, so
$$(u-4)^2+(v-7)^2\ =\ 20\quad\ldots\boxed2.$$
Substitute $v$ from $\boxed1$ into $\boxed2$ will give you a quadratic equation in $u$, which you can easily solve (knowing that $u=6$ is one solution).
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K