How Can I Find the Equation of the Dotted Tangent Line of a Circle?

Click For Summary

Discussion Overview

The discussion revolves around finding the equation of a tangent line to a circle, specifically a dotted tangent line that is parallel to a given lower tangent line. The context includes analytical geometry and involves determining the correct coordinates of a point on the circle.

Discussion Character

  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant presents the equation of the circle and the coordinates of the center and a point on the circle, seeking help to find the tangent line.
  • Another participant suggests using a vector approach to find a perpendicular vector to the tangent line and then determining the tangent point, but later acknowledges that vectors are not allowed in this context.
  • A participant points out that the coordinates of point A do not satisfy the circle's equation, implying a potential error in the problem setup.
  • Another participant agrees with the correction of point A's coordinates, suggesting it should be (6,3) instead of (3,6), and provides a method to find the tangent point using the gradient of the line segment connecting points A and B.
  • There is a proposal to substitute the corrected coordinates into the circle's equation to derive a quadratic equation for further analysis.

Areas of Agreement / Disagreement

Participants generally agree on the need to correct the coordinates of point A, but there is disagreement on the methods to find the tangent line, with some advocating for vector methods and others insisting on purely analytical geometry approaches. The discussion remains unresolved regarding the correct approach to finding the tangent line.

Contextual Notes

Limitations include the initial incorrect coordinates of point A, which affects the validity of the tangent line calculations. The discussion also highlights the restriction against using vector methods in the context of analytical geometry.

Yankel
Messages
390
Reaction score
0
Dear all,

Attached is a picture of a circle.

View attachment 9133

The lower tangent line is y=0.5x. The center of the circle is M(4,7) while the point A is (3,6).

I found the equation of the circle, it is:

$(x-4)^{2}+(y-7)^{2}=20$

and I wish to find the dotted tangent line. I know that it is parallel to the lower one, therefore, the slope is the same. I can't find the tangent point.

Can you give me a hint please ?
 

Attachments

  • Capture.PNG
    Capture.PNG
    7.3 KB · Views: 127
Physics news on Phys.org
Yankel said:
Dear all,

Attached is a picture of a circle.
The lower tangent line is y=0.5x. The center of the circle is M(4,7) while the point A is (3,6).

I found the equation of the circle, it is:

$(x-4)^{2}+(y-7)^{2}=20$

and I wish to find the dotted tangent line. I know that it is parallel to the lower one, therefore, the slope is the same. I can't find the tangent point.

Can you give me a hint please ?

You know $A=(3,6)$, and a direction vector along the lower tangent line is $\langle 2,1\rangle$. Can you find a vector perpendicular to that vector and pointed upwards towards the other tangent? And make it $\sqrt{20}$ units long? Then just add its components to $(3,6)$ to get the other tangent point.

[Edit] I notice that your point A doesn't satisfy the equation of your circle, so check your work so far.
 
Last edited:
I am sorry, I did not mention this. The problem is in analytical geometry, no vectors are allowed
 
Yankel said:
I am sorry, I did not mention this. The problem is in analytical geometry, no vectors are allowed

Since the tangent line is parallel, it must be of the form $y=\frac 12 x + b$ for some constant $b$, which is also the intersection with the y-axis.

Substitute in the circle equation, which becomes a quadratic equation.
Since it is a tangent it has exactly 1 point on the circle.
This happens when the square root part of the quadratic solution is zero.
From there we can find $b$.
 
Something is wrong here. If a circle has centre at $(4,7)$ and goes through the point $A$ at $(3,6)$, then the tangent at $A$ will not go through the origin. It looks to me as though $A$ should be the point $(6,3)$ rather than $(3,6)$.
 
Hi Yankel.

As Opalg pointed out, there is a typo with the co-ordinates of the point A; it should be $(6,3)$ rather than $(3,6)$.

Let B with co-ordinates $(u,v)$ be the point opposite A on the circle. Then the line segment BA is perpendicular to the tangent line $y=\frac12x$ and so has gradient $-2$, i.e.
$$\frac{v-3}{u-6}\ =\ -2$$
from which we get
$$v\ =\ -2u+15\quad\ldots\boxed1.$$
Also $(u,v)$ lies on the circle, so
$$(u-4)^2+(v-7)^2\ =\ 20\quad\ldots\boxed2.$$
Substitute $v$ from $\boxed1$ into $\boxed2$ will give you a quadratic equation in $u$, which you can easily solve (knowing that $u=6$ is one solution).
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K