How can I solve these two physics problems? (equilibrium and moment)

Click For Summary
SUMMARY

This discussion focuses on solving physics problems related to equilibrium and moments, specifically using torque equations. Participants confirm the use of the equation for net torque about a point and emphasize the importance of keeping calculations symbolic until the final step for precision. Key equations discussed include the balance of forces in AC and the net torque equation involving a distance x from point B. The conversation highlights the significance of understanding the components of forces and their moments in solving these types of problems.

PREREQUISITES
  • Understanding of basic physics concepts such as equilibrium and torque
  • Familiarity with force components and their calculations
  • Knowledge of LaTeX for representing mathematical equations
  • Ability to interpret and manipulate symbolic representations in physics
NEXT STEPS
  • Study the principles of torque and equilibrium in physics
  • Learn how to derive and manipulate equations for net torque
  • Explore the use of symbolic representation in physics problem-solving
  • Review trigonometric functions and their applications in force analysis
USEFUL FOR

Students and educators in physics, particularly those focusing on mechanics, as well as anyone looking to improve their problem-solving skills in equilibrium and torque scenarios.

Tapias5000
Messages
46
Reaction score
10
Homework Statement
1) The non-elongated length of the spring AB is 8 m. If the block is held in the equilibrium position equilibrium position shown, determine the mass of the block at D.
2) Replace the system acting on the frame by an equivalent resultant force and specify the point, measured from B, where the line of action of the resultant intersects element BC.
Relevant Equations
1) Σfx=0, Σfy=0 and F=kx
2) Σfx=0, Σfy=0, Θ=arctan(Σfy/Σfx) and ΣMb=Mrb
Imagen1.png

I tried to solve it and I got the following is it correct?
<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}------------------\\
Hypotenuse\ 1_{AC}\\
h_{AC}=\sqrt{6^2+6^2}\\
h_{AC}=6\sqrt{2}\\
------------------\\
Hypotenuse\ 2_{AB}\ \\
h_{AB}=\sqrt{6^2+8^2}\\
h_{AB}=10\\
------------------\\
F_r=\left(l_f-l_i\right)\cdot k\ \\
F_{AB}=\left(10-8\right)\cdot40\ \\
\left[F_{AB}=80\right]\\
------------------\\
Σfx=0\\
F_{AB}\left(\frac{8}{10}\right)-F_{AC}\left(\frac{6}{6\sqrt{2}}\right)=0\\
80\left(\frac{8}{10}\right)-F_{AC}\left(\frac{1}{\sqrt{2}}\right)=0\\
F_{AC}\left(\frac{1}{\sqrt{2}}\right)=80\left(\frac{8}{10}\right)\\
F_{AC}=80\left(\frac{8\sqrt{2}}{10}\right)\\
\left[F_{AC}=90.51\right]\\
------------------\\
Σfy=0\\
F_{AB}\left(\frac{6}{10}\right)+F_{AC}\left(\frac{6}{6\sqrt{2}}\right)-D=0\\
80\left(\frac{6}{10}\right)+90.51\left(\frac{1}{\sqrt{2}}\right)-D=0\\
D=80\left(\frac{6}{10}\right)+90.51\left(\frac{1}{\sqrt{2}}\right)\\
\left[D=112=w\right]\\
m=\frac{w}{g}\\
m=\frac{112}{9.8}\\
\left[m=11.42kg\right]\\
------------------\end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><mi>H</mi><mi>y</mi><mi>p</mi><mi>o</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>u</mi><mi>s</mi><mi>e</mi><mtext></mtext><msub><mn>1</mn><mrow data-mjx-texclass=ORD><mi>A</mi><mi>C</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>h</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>C</mi></mrow></msub><mo>=</mo><msqrt><msup><mn>6</mn><mn>2</mn></msup><mo>+</mo><msup><mn>6</mn><mn>2</mn></msup></msqrt></mtd></mtr><mtr><mtd><msub><mi>h</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>C</mi></mrow></msub><mo>=</mo><mn>6</mn><msqrt><mn>2</mn></msqrt></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><mi>H</mi><mi>y</mi><mi>p</mi><mi>o</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>u</mi><mi>s</mi><mi>e</mi><mtext></mtext><msub><mn>2</mn><mrow data-mjx-texclass=ORD><mi>A</mi><mi>B</mi></mrow></msub><mtext></mtext></mtd></mtr><mtr><mtd><msub><mi>h</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>B</mi></mrow></msub><mo>=</mo><msqrt><msup><mn>6</mn><mn>2</mn></msup><mo>+</mo><msup><mn>8</mn><mn>2</mn></msup></msqrt></mtd></mtr><mtr><mtd><msub><mi>h</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>B</mi></mrow></msub><mo>=</mo><mn>10</mn></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><msub><mi>F</mi><mi>r</mi></msub><mo>=</mo><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><msub><mi>l</mi><mi>f</mi></msub><mo>−</mo><msub><mi>l</mi><mi>i</mi></msub><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>⋅</mo><mi>k</mi><mtext></mtext></mtd></mtr><mtr><mtd><msub><mi>F</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>B</mi></mrow></msub><mo>=</mo><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>10</mn><mo>−</mo><mn>8</mn><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>⋅</mo><mn>40</mn><mtext></mtext></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><msub><mi>F</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>B</mi></mrow></msub><mo>=</mo><mn>80</mn><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><mi>Σ</mi><mi>f</mi><mi>x</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><msub><mi>F</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>B</mi></mrow></msub><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mn>8</mn><mn>10</mn></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>−</mo><msub><mi>F</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>C</mi></mrow></msub><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mn>6</mn><mrow><mn>6</mn><msqrt><mn>2</mn></msqrt></mrow></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mn>80</mn><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mn>8</mn><mn>10</mn></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>−</mo><msub><mi>F</mi><mrow data-mjx-texclass=ORD><mi>A</mi><mi>C</mi></mrow></msub><

and 2
1632458891856.png

My solution... is a negative distance?
<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}----------------------\\
hypotenuse\\
h=\sqrt{6^2+8^2}\\
h=10\\
----------------------\\
F_{rx}=Σfx\\
300\left(\frac{8}{10}\right)+100\cos\left(60\right)=Σfx\\
\left[\textcolor{#E94D40}{290=Σfx}\right]\\
F_{ry}=Σfy\\
300\left(\frac{6}{10}\right)+100\sin\left(60\right)=Σfy\\
\left[\textcolor{#E94D40}{267=Σfy}\right]\\
----------------------\\
Σr=\sqrt{290^2+267^2}\\
Σr=394.2\\
Θ=\arctan\left(\frac{267}{290}\right)\\
Θ=42.64°\\
----------------------\\
\end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><mi>h</mi><mi>y</mi><mi>p</mi><mi>o</mi><mi>t</mi><mi>e</mi><mi>n</mi><mi>u</mi><mi>s</mi><mi>e</mi></mtd></mtr><mtr><mtd><mi>h</mi><mo>=</mo><msqrt><msup><mn>6</mn><mn>2</mn></msup><mo>+</mo><msup><mn>8</mn><mn>2</mn></msup></msqrt></mtd></mtr><mtr><mtd><mi>h</mi><mo>=</mo><mn>10</mn></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><msub><mi>F</mi><mrow data-mjx-texclass=ORD><mi>r</mi><mi>x</mi></mrow></msub><mo>=</mo><mi>Σ</mi><mi>f</mi><mi>x</mi></mtd></mtr><mtr><mtd><mn>300</mn><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mn>8</mn><mn>10</mn></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>+</mo><mn>100</mn><mi>cos</mi><mo data-mjx-texclass=NONE>⁡</mo><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>60</mn><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>=</mo><mi>Σ</mi><mi>f</mi><mi>x</mi></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><mn>290</mn><mo>=</mo><mi>Σ</mi><mi>f</mi><mi>x</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><msub><mi>F</mi><mrow data-mjx-texclass=ORD><mi>r</mi><mi>y</mi></mrow></msub><mo>=</mo><mi>Σ</mi><mi>f</mi><mi>y</mi></mtd></mtr><mtr><mtd><mn>300</mn><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mn>6</mn><mn>10</mn></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>+</mo><mn>100</mn><mi>sin</mi><mo data-mjx-texclass=NONE>⁡</mo><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>60</mn><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>=</mo><mi>Σ</mi><mi>f</mi><mi>y</mi></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><mn>267</mn><mo>=</mo><mi>Σ</mi><mi>f</mi><mi>y</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><mi>Σ</mi><mi>r</mi><mo>=</mo><msqrt><msup><mn>290</mn><mn>2</mn></msup><mo>+</mo><msup><mn>267</mn><mn>2</mn></msup></msqrt></mtd></mtr><mtr><mtd><mi>Σ</mi><mi>r</mi><mo>=</mo><mn>394.2</mn></mtd></mtr><mtr><mtd><mi>Θ</mi><mo>=</mo><mi>arctan</mi><mo data-mjx-texclass=NONE>⁡</mo><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mn>267</mn><mn>290</mn></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow></mtd></mtr><mtr><mtd><mi>Θ</mi><mo>=</mo><mn>42.64</mn><mrow data-mjx-texclass=ORD><mo data-mjx-pseudoscript=true>°</mo></mrow></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr></mtable></math>
gVaQeWcfcZc2lM4XJSF1GN0NgYigqsRTo4zKkbzdZl2sU3L=s0.png


<math xmlns=http://www.w3.org/1998/Math/MathML display=block data-is-equatio=1 data-latex=\begin{array}{l}----------------------\\
ΣM_b=1000-300\left(\frac{8}{10}\right)\cdot3-100sen\left(60\right)\cdot2\\
\left[\textcolor{#E94D40}{ΣM_b=106.79lb_p}\right]\\
\left[\textcolor{#E94D40}{Mr_b=-267\cdot d}\right]\\
----------------------\\
ΣM_b=Mr_b\\
106.79lb_p=-267\cdot d\\
-0.4p=d\\
----------------------\end{array}><mtable columnalign=left columnspacing=1em rowspacing=4pt><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><mi>Σ</mi><msub><mi>M</mi><mi>b</mi></msub><mo>=</mo><mn>1000</mn><mo>−</mo><mn>300</mn><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mfrac><mn>8</mn><mn>10</mn></mfrac><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>⋅</mo><mn>3</mn><mo>−</mo><mn>100</mn><mi>s</mi><mi>e</mi><mi>n</mi><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>(</mo><mn>60</mn><mo data-mjx-texclass=CLOSE>)</mo></mrow><mo>⋅</mo><mn>2</mn></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><mi>Σ</mi><msub><mi>M</mi><mi>b</mi></msub><mo>=</mo><mn>106.79</mn><mi>l</mi><msub><mi>b</mi><mi>p</mi></msub></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><mrow data-mjx-texclass=INNER><mo data-mjx-texclass=OPEN>[</mo><mstyle mathcolor=#E94D40><mi>M</mi><msub><mi>r</mi><mi>b</mi></msub><mo>=</mo><mo>−</mo><mn>267</mn><mo>⋅</mo><mi>d</mi></mstyle><mo data-mjx-texclass=CLOSE>]</mo></mrow></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr><mtr><mtd><mi>Σ</mi><msub><mi>M</mi><mi>b</mi></msub><mo>=</mo><mi>M</mi><msub><mi>r</mi><mi>b</mi></msub></mtd></mtr><mtr><mtd><mn>106.79</mn><mi>l</mi><msub><mi>b</mi><mi>p</mi></msub><mo>=</mo><mo>−</mo><mn>267</mn><mo>⋅</mo><mi>d</mi></mtd></mtr><mtr><mtd><mo>−</mo><mn>0.4</mn><mi>p</mi><mo>=</mo><mi>d</mi></mtd></mtr><mtr><mtd><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo><mo>−</mo></mtd></mtr></mtable></math>
f4UF7r88IKBjA-7gYSwOVJXwWKfJ7tEPGF5A6Y3lmQFSqBr=s0.png
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
I confirm both your answers, but there are easier ways.
1. The horizontal and vertical components of the force in AC must be equal, so you can write the weight equals ##F_{AB}(\frac 35+\frac 45)##.
2. Suppose the point is x to the left of B and write that the net torque about that point is zero:
##-\frac 453(300)+\frac 35x(300)+1000+\frac{\sqrt 3}22(100)(x-2)=0##.

Whoops, typo. Should be ##-\frac 453(300)+\frac 35x(300)+1000+\frac{\sqrt 3}2(100)(x-2)=0##

As a matter of general style, I strongly recommend keeping everything symbolic until the final step, creating symbols as necessary for given numerical values. It has many advantages, including, often, less arithmetic and greater precision.
Ok, I violated my own principle just above, but if you had created symbols for the forces and lengths I would have preferred to use them.
 
Last edited:
  • Like
Likes   Reactions: Delta2 and Tapias5000
haruspex said:
I confirm both your answers, but there are easier ways.
1. The horizontal and vertical components of the force in AC must be equal, so you can write the weight equals ##F_{AB}(\frac 35+\frac 45)##.
2. Suppose the point is x to the left of B and write that the net torque about that point is zero:
##-\frac 453(300)+\frac 35x(300)+1000+\frac{\sqrt 3}22(100)(x-2)=0##.

As a matter of general style, I strongly recommend keeping everything symbolic until the final step, creating symbols as necessary for given numerical values. It has many advantages, including, often, less arithmetic and greater precision.
Ok, I violated my own principle just above, but if you had created symbols for the forces and lengths I would have preferred to use them.
bruh, I can barely understand what I'm doing enough to apply other formulas... sad.

in 3/5*x*300 generates angular momentum at b?
also by doing your formula I get a different value at x and it is also positive.
 
Tapias5000 said:
in 3/5*x*300 generates angular momentum at b?
No, but we are interested in the moment about a point distance x to the left of B. Both horizontal and vertical components of the 300lb force can have a moment about that.
Tapias5000 said:
also by doing your formula I get a different value at x and it is also positive.
I made a typo in the LaTeX, doubling up a 2. See the corrected post.
 
  • Like
Likes   Reactions: Tapias5000
haruspex said:
No, but we are interested in the moment about a point distance x to the left of B. Both horizontal and vertical components of the 300lb force can have a moment about that.

I made a typo in the LaTeX, doubling up a 2. See the corrected post.
oooh, indeed the result is the same, is a negative distance logical?
how do you know that you can equal it to 0? do you have any video where you explain this method?
how do you get that sqrt(3)/2, and how do you know where to put x?

Sorry, this is the first time I see this method...
 
Tapias5000 said:
oooh, indeed the result is the same, is a negative distance logical?
how do you know that you can equal it to 0? do you have any video where you explain this method?
how do you get that sqrt(3)/2, and how do you know where to put x?

Sorry, this is the first time I see this method...
I understand that sin(60)=sqrt(3)/2
but cos(60)=1/2 how do you get a factor of sqrt(3)/2 then?
 
Tapias5000 said:
oooh, indeed the result is the same, is a negative distance logical?
how do you know that you can equal it to 0? do you have any video where you explain this method?
how do you get that sqrt(3)/2, and how do you know where to put x?

Sorry, this is the first time I see this method...
Suppose the equivalent force is F passing through the line BC at point P. The force has no moment about P, so the system of forces has no moment about P.

It certainly could turn out to be to the right of B. We know F's vertical component must be up the page, so the stronger the anticlockwise applied torque at C, the further to the right F must act.
 
  • Like
Likes   Reactions: Tapias5000
Tapias5000 said:
I understand that sin(60)=sqrt(3)/2
but cos(60)=1/2 how do you get a factor of sqrt(3)/2 then?

It's the vertical component of the force at C. Since the horizontal component acts along BC, it can have no moment about P, but the vertical component will be distance x-2 to the left of P.
 
  • Like
Likes   Reactions: Tapias5000
ooh okay, i think I get the idea
 
  • #10
haruspex said:
It's the vertical component of the force at C. Since the horizontal component acts along BC, it can have no moment about P, but the vertical component will be distance x-2 to the left of P.
thank you for the clarifications.
 
  • Like
Likes   Reactions: Delta2

Similar threads

Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
8
Views
1K