Hans de Vries
Science Advisor
Gold Member
- 1,094
- 31
OK, They can indeed be considered as being equivalent, as it should be. Klein Gordon Forward-in-time propagator
<br /> \frac{-1}{(E-i\epsilon)^2 -p^2-m^2} ~~~~\Leftrightarrow~~~~\frac{-1}{E^2-p^2-m^2}\ \ +\ \ \frac{\pi}{2i\sqrt{p^2+m^2}}\bigg( \delta(E-\sqrt{p^2+m^2})-\delta(E+\sqrt{p^2+m^2}) \bigg)<br />
Klein Gordon Backward-in-time propagator
<br /> \frac{-1}{(E+i\epsilon)^2 -p^2-m^2} ~~~~\Leftrightarrow~~~~\frac{-1}{E^2-p^2-m^2}\ \ -\ \ \frac{\pi}{2i\sqrt{p^2+m^2}}\bigg( \delta(E-\sqrt{p^2+m^2})-\delta(E+\sqrt{p^2+m^2}) \bigg)<br />
Both sides give imaginary delta-pulses in the poles with the right signs.
More convincingly, The "pole-pick-prescriptions" at the left side give
the same formula as the direct Fourier transforms of the right side:Fourier transform (time <--> energy)
<br /> \frac{\sin\left(\sqrt{p^2+m^2}~~ |t|\right)}{2\sqrt{p^2+m^2}}~~~~\Leftrightarrow~~~~\frac{-1}{E^2-p^2-m^2}<br /><br /> \frac{\sin\left(\sqrt{p^2+m^2}~~~ t~~\right)}{2\sqrt{p^2+m^2}}~~~~~~\Leftrightarrow~~~~\frac{\pi}{2i\sqrt{p^2+m^2}}\bigg( \delta(E-\sqrt{p^2+m^2})-\delta(E+\sqrt{p^2+m^2}) \bigg)<br />So, adding the two selects the forward light-cone, subtracting the
two selects the backward light-cone. The two are a Hilbert pair.
They respect the Kramers, Kronig relation.Regards, Hans
<br /> \frac{-1}{(E-i\epsilon)^2 -p^2-m^2} ~~~~\Leftrightarrow~~~~\frac{-1}{E^2-p^2-m^2}\ \ +\ \ \frac{\pi}{2i\sqrt{p^2+m^2}}\bigg( \delta(E-\sqrt{p^2+m^2})-\delta(E+\sqrt{p^2+m^2}) \bigg)<br />
Klein Gordon Backward-in-time propagator
<br /> \frac{-1}{(E+i\epsilon)^2 -p^2-m^2} ~~~~\Leftrightarrow~~~~\frac{-1}{E^2-p^2-m^2}\ \ -\ \ \frac{\pi}{2i\sqrt{p^2+m^2}}\bigg( \delta(E-\sqrt{p^2+m^2})-\delta(E+\sqrt{p^2+m^2}) \bigg)<br />
Both sides give imaginary delta-pulses in the poles with the right signs.
More convincingly, The "pole-pick-prescriptions" at the left side give
the same formula as the direct Fourier transforms of the right side:Fourier transform (time <--> energy)
<br /> \frac{\sin\left(\sqrt{p^2+m^2}~~ |t|\right)}{2\sqrt{p^2+m^2}}~~~~\Leftrightarrow~~~~\frac{-1}{E^2-p^2-m^2}<br /><br /> \frac{\sin\left(\sqrt{p^2+m^2}~~~ t~~\right)}{2\sqrt{p^2+m^2}}~~~~~~\Leftrightarrow~~~~\frac{\pi}{2i\sqrt{p^2+m^2}}\bigg( \delta(E-\sqrt{p^2+m^2})-\delta(E+\sqrt{p^2+m^2}) \bigg)<br />So, adding the two selects the forward light-cone, subtracting the
two selects the backward light-cone. The two are a Hilbert pair.
They respect the Kramers, Kronig relation.Regards, Hans
Last edited: