How can vacuum heating be calculated for substrates in a chamber?

AI Thread Summary
The discussion focuses on calculating the heating time of polycor substrates in a vacuum chamber using a mathematical model. The primary concern is achieving a balance between conductive heating and radiative heat losses, with the goal of determining when these two factors equalize. Participants express skepticism about the results, particularly regarding unrealistic temperature values and the assumption that all heater energy is directed to the substrates without losses. There are also inquiries about the impact of conductive losses from the heater's mounting and the need for accurate graphical representation of the data. The conversation highlights the need for further calculations using software like ANSYS to account for all variables accurately.
ektov_konstantin
Messages
5
Reaction score
0
TL;DR Summary
I have a physically correct approach but I get incorrect result and need some help!
Hello, everyone!

I am calculating the time of substrates' heating in the vacuum chamber.

It is a simple mathematical model to calculate roughly how much time does it take to heat polycor substrates in the vacuum chamber.

At least all the tube heater`s power heats the substrates (this is because the geometry of the vacuum chamber and beacuse all inner surface is polished).

So our goal is to get the time when conductive heating will be equal to the radiative heat losses.

Look at the scheme.

694950_.thumb.png.4125f3a65b7a94880d218a66a886a3fd.png


So the differential equation is .
-02-19_162619.png.6f1a8e6dff1c3ea66caa13291c276f73.png


And dividing the variables we get
-02-19_162747.png.1ba22e7d00d1a497662ae4e7e408f27e.png
, where T_0 is the Temperature when conductive heating equals radiative losses.

If P=800 W, I have this dependence...

-02-19_163141.png.d347234f0e7df4c129bd06fc0977629d.png


and as you can see, it is not physically right beacuse of two reasons. First - why there is a horisontal asymptote (it must be vertical!) ? Second - the heating is very-very fast...

For instance, I have calculated the heating time if there are no radiative losses.

t = c*m*(T_0-293)/W

and for W=800 W, T_0=623 K (technological process` temperature) we get t=0,205 seconds - and it is rubbish too I think...

Additionaly I add the constants and variables that I have used in my MathCAD app.

-02-19_163954.png.5a5645c7f51187b4459b58605d36139c.png


image.png.4e673247a23dc0f16845ab85b266186d.png
 
Engineering news on Phys.org
  1. Is ALL of the thermal energy of the heater focused on the work piece?
    • How?
  2. What about conductive losses from the heater thru its mounting?
  3. Is the work piece suspended and not in contact with a support that gives a path for conductive losses?
    • How?

The graph shows a temperature of 1×105K (100 000 Kelvin); is that realistic? (Have you obtained a Star for a heat source?)

Graphs generally have the independent variable (Time) on the X-axis, and the dependent variable (Temperature) on the Y-axis; that makes them easier for most of us to interpret.

Anxiously awaiting clarifications of the above!
Tom
 
Tom.G said:
  1. Is ALL of the thermal energy of the heater focused on the work piece?
    • How?
  2. What about conductive losses from the heater thru its mounting?
  3. Is the work piece suspended and not in contact with a support that gives a path for conductive losses?
    • How?

The graph shows a temperature of 1×105K (100 000 Kelvin); is that realistic? (Have you obtained a Star for a heat source?)

Graphs generally have the independent variable (Time) on the X-axis, and the dependent variable (Temperature) on the Y-axis; that makes them easier for most of us to interpret.

Anxiously awaiting clarifications of the above!
Tom
Hello, Tom!

Thank you for your reply.

Imagine, that this is abstract mathematical model.
I extremely agree with you that...
1. There are conductive losses in the heater mounting and to the polycor substrates basement (this is round plate)
2. Not all the power from the heater heats the substrates but if I have to make this assumption to ease my calculation. It is affordable because all inner surface of the chamber is polished.

Later I will make the heat transfer calculation in ANSYS application. It will consider all radiation heating and conductive losses.

BUT my mathematical calculation gives unphysical and illogical results.

Just imagine that this is an abstract body... And losses are radiative. Temperature must come to stationary value. But it doesn't. What I get is that time (!) becomes static. Time stops. The question is why?!

My differential equation is solved correct - I have rechecked it.
 
Lnewqban said:
Your equation seems to be correct.
The calculations may have unit's problems if the result is not logical.
Your diagram should look something like this:

View attachment 297387
Yes. That`s right. Thank you for your answer. But I`ve checked units. They are all in SI... May I show you my MathCAD file?
 
ektov_konstantin said:
Yes. That`s right. Thank you for your answer. But I`ve checked units. They are all in SI... May I show you my MathCAD file?
You are welcome.
Please, do.
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top