How Can We Prove the Conjugate Transpose Property of Complex Matrices?

Click For Summary
The discussion focuses on proving the conjugate transpose property of complex matrices, specifically the equation (Y^*) * X = complex conjugate of {(X^*) * Y}. Participants clarify that (Y^*) and (X^*) represent the complex conjugates of the transposed matrices Y and X, respectively. They suggest utilizing the property (A*B)^T = (B^T) * (A^T) to aid in the proof. There is also a request for clarification on the notation used, particularly regarding the definitions of complex conjugates and transposes. The conversation emphasizes the need for a clear understanding of matrix operations to successfully prove the property.
kokolo
Messages
5
Reaction score
0
TL;DR Summary: For every Complex matrix proove that: (Y^*) * X = complex conjugate of {(X^*) * Y}

Here (Y^*) and (X^*) is equal to complex conjugate of (Y^T) and complex conjugate of (X^T) where T presents transponse of matrix
I think we need to use (A*B)^T= (B^T) * (A^T) and
Can you help me proove this cause I'm really stuck,
Thanks in advance
 
Physics news on Phys.org
kokolo said:
TL;DR Summary: For every Complex matrix proove that: (Y^*) * X = complex conjugate of {(X^*) * Y}

Here (Y^*) and (X^*) is equal to complex conjugate of (Y^T) and complex conjugate of (X^T) where T presents transponse of matrix
I think we need to use (A*B)^T= (B^T) * (A^T) and
Can you help me proove this cause I'm really stuck,
Thanks in advance
What do you know? What does ^* mean? Can you prove it for a single complex number, a ##1\times 1## matrix?

By the way: Here is explained how you can type formulas on PF: https://www.physicsforums.com/help/latexhelp/
 
fresh_42 said:
What do you know? What does ^* mean? Can you prove it for a single complex number, a ##1\times 1## matrix?

By the way: Here is explained how you can type formulas on PF: https://www.physicsforums.com/help/latexhelp/
## Y^* X= \overline{X^* Y}##
 
I have difficulties understanding what this is all about. Say ##\overline{X}## means the complex conjugate, ##X^T## means the transposed matrix, and ##X^\dagger=\overline{X}^T## the adjoint matrix (conjugate and transposed). Also, please write the multiplication ##X\cdot Y## with a dot. With these notations, what do you need to prove?
 
fresh_42 said:
I have difficulties understanding what this is all about. Say ##\overline{X}## means the complex conjugate, ##X^T## means the transposed matrix, and ##X^\dagger=\overline{X}^T## the adjoint matrix (conjugate and transposed). Also, please write the multiplication ##X\cdot Y## with a dot. With these notations, what do you need to prove?
##Y^* \cdot X=\overline{X^* \cdot Y}## where ##Y^*=\overline{Y^T}## and ##X^*=\overline{X^T}## and
complex conjugate matrix is ##\overline{X^* \cdot Y}##
 
You have ##(X \cdot Y)^T=Y^T\cdot X^T## and ##(X\cdot Y)^*=\overline{X\cdot Y}^T=(\overline{X}\cdot\overline{Y})^T=\overline{Y}^T\cdot \overline{X}^T=Y^*\cdot X^*.##

Does this help?
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...