How can we simplify the triple integral of a rectangular box?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on simplifying the triple integral of a rectangular box defined by the inequalities $a\leq x\leq b$, $c\leq y\leq d$, and $k\leq z\leq l$. The established conclusion is that the triple integral can be expressed as the product of three separate integrals: \[\iiint\limits_G f(x)g(y)h(z)\,dV = \left[\int_a^b f(x)\,dx\right]\left[\int_c^d g(y)\,dy\right]\left[\int_k^l h(z)\,dz\right].\] This result was confirmed by participants Deveno and Sudharaka, highlighting the effectiveness of separating variables in multiple integrals.

PREREQUISITES
  • Understanding of triple integrals in multivariable calculus
  • Familiarity with the concept of rectangular boxes in three-dimensional space
  • Knowledge of functions and their integration
  • Basic proficiency in mathematical notation and inequalities
NEXT STEPS
  • Study the properties of triple integrals in multivariable calculus
  • Explore the concept of Fubini's Theorem for multiple integrals
  • Learn about applications of triple integrals in physics and engineering
  • Investigate numerical methods for evaluating triple integrals
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and multivariable analysis, as well as professionals in fields requiring integration of functions over three-dimensional domains.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem (and the first University POTW of 2013)!

-----

Problem: Let $G$ be a rectangular box defined by the inequalities $a\leq x\leq b$, $c\leq y\leq d$, $k\leq z\leq l$. Show that
\[\iiint\limits_G f(x)g(y)h(z)\,dV = \left[\int_a^b f(x)\,dx\right]\left[\int_c^d g(y)\,dy\right]\left[\int_k^l h(z)\,dz\right],\]
where $\,dV=\,dx\,dy\,dz$.

-----

 
Physics news on Phys.org
This week's problem was correctly answered by Deveno and Sudharaka. You can find Deveno's solution below:

Let $H$ be an anti-derivative of $h$, $G$ be an anti-derivative of $g$ and $F$ an anti-derivative of $f$. I will call the region of integration $R$ to avoid confusion. $f,g,h$ will be assumed to be integrable over the appropriate intervals.Then:
$$\iiint\limits_R f(x)g(y)h(z)\ dV = \int_a^b \left(\int_c^d \int_k^l f(x)g(y)h(z)\ dy\ dz \right)\ dx$$
$$= \int_a^b \left( \int_c^d \left( \int_k^l f(x)g(y)h(z)\ dz \right)\ dy \right)\ dx = \int_a^b \left( \int_c^d f(x)g(y) \left( \int_k^l h(z)\ dz\right)\ dy \right)\ dx$$
$$= \int_a^b \left(\int_c^d [H(l) - H(k)]f(x)g(y)\ dy\right)\ dx = [H(l) - H(k)]\int_a^b \left(\int_c^d f(x)g(y)\ dy\right)\ dx$$
$$=[H(l) - H(k)]\int_a^b f(x) \left(\int_c^d g(y)\ dy \right)\ dx = [H(l) - H(k)]\int_a^b [G( d) - G(c)]f(x)\ dx$$
$$= [G( d) - G(c)][H(l)-H(k)]\int_a^b f(x)\ dx = [F(b)-F(a)][G( d) - G(c)][H(l) - H(k)]$$
$$= \left[\int_a^b f(x)\ dx\right]\left[\int_c^d g(y)\ dy\right]\left[\int_k^l h(z)\ dz\right]$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 105 ·
4
Replies
105
Views
7K