How can we simplify the triple integral of a rectangular box?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on simplifying the triple integral of a rectangular box defined by specific inequalities for x, y, and z. It establishes that the integral of a product of functions can be separated into the product of their individual integrals over the defined ranges. Participants Deveno and Sudharaka provided correct solutions to the problem. The solution emphasizes the use of the properties of integrals in multidimensional calculus. This approach simplifies the computation of triple integrals significantly.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem (and the first University POTW of 2013)!

-----

Problem: Let $G$ be a rectangular box defined by the inequalities $a\leq x\leq b$, $c\leq y\leq d$, $k\leq z\leq l$. Show that
\[\iiint\limits_G f(x)g(y)h(z)\,dV = \left[\int_a^b f(x)\,dx\right]\left[\int_c^d g(y)\,dy\right]\left[\int_k^l h(z)\,dz\right],\]
where $\,dV=\,dx\,dy\,dz$.

-----

 
Physics news on Phys.org
This week's problem was correctly answered by Deveno and Sudharaka. You can find Deveno's solution below:

Let $H$ be an anti-derivative of $h$, $G$ be an anti-derivative of $g$ and $F$ an anti-derivative of $f$. I will call the region of integration $R$ to avoid confusion. $f,g,h$ will be assumed to be integrable over the appropriate intervals.Then:
$$\iiint\limits_R f(x)g(y)h(z)\ dV = \int_a^b \left(\int_c^d \int_k^l f(x)g(y)h(z)\ dy\ dz \right)\ dx$$
$$= \int_a^b \left( \int_c^d \left( \int_k^l f(x)g(y)h(z)\ dz \right)\ dy \right)\ dx = \int_a^b \left( \int_c^d f(x)g(y) \left( \int_k^l h(z)\ dz\right)\ dy \right)\ dx$$
$$= \int_a^b \left(\int_c^d [H(l) - H(k)]f(x)g(y)\ dy\right)\ dx = [H(l) - H(k)]\int_a^b \left(\int_c^d f(x)g(y)\ dy\right)\ dx$$
$$=[H(l) - H(k)]\int_a^b f(x) \left(\int_c^d g(y)\ dy \right)\ dx = [H(l) - H(k)]\int_a^b [G( d) - G(c)]f(x)\ dx$$
$$= [G( d) - G(c)][H(l)-H(k)]\int_a^b f(x)\ dx = [F(b)-F(a)][G( d) - G(c)][H(l) - H(k)]$$
$$= \left[\int_a^b f(x)\ dx\right]\left[\int_c^d g(y)\ dy\right]\left[\int_k^l h(z)\ dz\right]$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K