MHB How Can You Prove Properties of Cells in Lattices Using the Complex Plane?

Click For Summary
The discussion focuses on proving properties of cells in lattices using the complex plane, specifically through the map defined by the norm on Gaussian integers. It establishes that the norm's properties lead to certain inequalities and conditions for elements in the lattice. The second point involves demonstrating that a specific function is a composition of transformations, including dilation and rotation. The third point suggests finding a lattice point that results in a norm smaller than a given value, hinting at the use of the pigeonhole principle and geometric properties of the transformations. Overall, the conversation revolves around leveraging complex analysis to explore lattice structures and their properties.
pantboio
Messages
43
Reaction score
0
I have the following assignment:consider the map $$|\cdot|:\mathbb{Z}\longrightarrow \mathbb{N},\qquad |a+ib|:=a^2+b^2$$1) Prove that $|\alpha|<|\beta|$ iff $|\alpha|\leq |\beta|-1$ and $|\alpha|<1$ iff $\alpha=0$2) Let $\alpha,\beta\in\mathbb{Z},\beta\neq 0$. Prove that the map $f:\mathbb{Z}\longrightarrow\mathbb{Z}, f(\gamma):=\alpha-\gamma\beta$ is the composition of a dilatation by the factor $\sqrt{|\beta|}$, a rotation (angle?) and a translation.3) Deduce that there exists $\gamma\in\mathbb{Z}$ such that $|f(\gamma)|$ is strictly smaller than $|\beta|$.$\textbf{Hint:}$ compare the size of a cell of the lattice $f(\mathbb{Z})$ and the size of the set of points whose distance to $0$ is $\leq\sqrt{|\beta|}$.What i did: point 1) is a trivial consequence of the fact that the norm takes integer non negative values. For point 2), I use complex multiplication of numbers which is: multiply absolute values and add angles. For point 3), I'm actually waiting for a miracle... I suppose i should prove that there exists a cell in $f(\mathbb{Z})$ intersecting the open ball centered at the origin with radius $\sqrt{|\beta|}$, but i have no idea how to write down this. Only thing i noticed is that $f$ acts with a rotation, which does not affect distance from the origin, so that the only changes in $|\gamma|$ come from dilatation and by adding $\alpha$.Could someone put me on the right direction? Thanks in advance
 
Mathematics news on Phys.org
HINT:

The pigeonhole principle. Possibly. Still thinking.
 
New idea: consider the set of points $\gamma \in \mathbb{Z}i$ such that $|\beta|\cdot|\gamma|<|\alpha|$. This set does not change under rotation, under dilation it becomes a subset of the points $x \in \mathbb{Z}i$ such that $|x|<|\alpha|$. What does that mean for the resulting translation?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 125 ·
5
Replies
125
Views
19K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
20
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K