MHB How can you prove that cot 7.5 degrees equals the sum of four square roots?

Click For Summary
The discussion centers on proving that cotangent of 7.5 degrees equals the sum of four square roots: √2 + √3 + √4 + √6. Participants express excitement about the problem, with one member mentioning a triangle-based approach to demonstrate the proof. The simplicity of the method is highlighted, making the solution appear self-explanatory. Overall, the conversation emphasizes the elegance of the mathematical proof. The thread showcases enthusiasm for exploring trigonometric identities.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\cot 7\dfrac{1}{2}^{\circ}=\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}$.
 
Mathematics news on Phys.org
we have $\cos\ 15^\circ = \cos(60- 45)^\circ = \cos\ 60^\circ \cos\ 45^\circ + \sin \ 60^\circ \sin\ 45^\circ$

= $\dfrac{1}{2}\dfrac{1}{\sqrt{2}} + \dfrac{\sqrt{3}}{2}\dfrac{1}{\sqrt{2}}$

= $\dfrac{1}{4}(\sqrt{2} + \sqrt{6})$

also

$\sin \ 15^\circ = \sin (60- 45)^\circ = \sin \ 60^\circ \cos\ 45^\circ - \cos \ 60^\circ \sin\ 45^\circ$

= $\dfrac{\sqrt{3}}{2}\dfrac{1}{\sqrt{2}} - \dfrac{1}{2}\dfrac{1}{\sqrt{2}}$

= $\dfrac{1}{4}(\sqrt{6} - \sqrt{2})$now $\cot\ x= \dfrac{\cos\ x }{\sin \ x} = \dfrac{2\cos^2\ x }{2\sin \ x\cos \ x}$

= $\dfrac{1+\cos 2x}{\sin 2x}$ Hence $\cot \ 7\frac{1}{2}^\circ = \dfrac{1+\cos\ 15^\circ}{\sin\ 15^\circ}$

= $\dfrac{1+\dfrac{1}{4}(\sqrt{2} + \sqrt{6})}{\dfrac{1}{4}(\sqrt{6} - \sqrt{2})}$

= $\dfrac{4+(\sqrt{2} + \sqrt{6})}{(\sqrt{6} - \sqrt{2})}$

= $\dfrac{4+(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})}$

= $\dfrac{4(\sqrt{6} + \sqrt{2})+(\sqrt{6} + \sqrt{2})^2}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})}$

= $\dfrac{4(\sqrt{6} + \sqrt{2})+(\sqrt{6} + \sqrt{2})^2}{4}$

= $(\sqrt{6} + \sqrt{2})+\dfrac{(\sqrt{6} + \sqrt{2})^2}{4}$

= $(\sqrt{6} + \sqrt{2})+\dfrac{6 + 2 + 4 \sqrt{3}}{4}$

= $(\sqrt{6} + \sqrt{2})+\dfrac{8 + 4 \sqrt{3}}{4}$

= $(\sqrt{6} + \sqrt{2})+ 2 + \sqrt{3}$

= $\sqrt{2} + \sqrt{3}+ 2 + \sqrt{6}$

= $\sqrt{2} + \sqrt{3}+\sqrt{4} + \sqrt{6}$
 
Last edited:
Nice one, kaliprasad!(Yes)

I can't wait to show how I saw someone approached the problem by only drawing up a triangle and the rest is so self-explanatory! :)
View attachment 3075
Start to construct the rightmost triangle and work to the left, with creating two isosceles triangles and note that $\sqrt{8+4\sqrt{3}}=\sqrt{(2+2\sqrt{2}\sqrt{6}+6)}=\sqrt{(\sqrt{2}+\sqrt{6})^2}=\sqrt{2}+\sqrt{6}$

Therefore $\cot7\dfrac{1}{2}^{\circ}=\dfrac{1}{\dfrac{1}{\sqrt{3}+\sqrt{4}+\sqrt{8+4\sqrt{3}}}}=\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{6}$.
 

Attachments

  • trigochallenge.JPG
    trigochallenge.JPG
    12 KB · Views: 114