How Did 1886 Dutch Students Solve This Complex Math Problem?

Click For Summary
SUMMARY

The forum discussion centers on solving the equation $$\left ( a+x\right )^{2\over 3} + 6\left ( a-x\right )^{2\over 3} =5\left ( a^2- x^2 \right )^{1\over 3}$$ from an 1886 Dutch high school exam. Participants explore various algebraic manipulations, including substituting $$p = (a+x)^{\frac 13}$$ and $$q = (a-x)^{\frac 13}$$ to derive a quadratic equation $$p^2 - 5pq + 6q^2 = 0$$. The solutions for $$x$$ are established as $$x={ 7\over 9}\;a\ \lor\ x={ 13\over 14}\;a$$, with discussions on the implications of $$a \ge 0$$ and the quality of contemporary mathematics education.

PREREQUISITES
  • Understanding of algebraic manipulation and polynomial equations
  • Familiarity with cube roots and exponents
  • Knowledge of quadratic equations and their solutions
  • Basic concepts of mathematical problem-solving in high school curricula
NEXT STEPS
  • Study the method of substitution in algebraic equations
  • Learn about solving quadratic equations using the quadratic formula
  • Explore the properties of cube roots and their applications in equations
  • Investigate historical mathematics education standards and their evolution
USEFUL FOR

Mathematics students, educators, and anyone interested in historical mathematical problem-solving techniques and their relevance in contemporary education.

BvU
Science Advisor
Homework Helper
Messages
16,215
Reaction score
4,928
Homework Statement
Solve ##x## from $$\left ( a+x\right )^{2\over 3} + 6\left ( a-x\right )^{2\over 3} =5\left ( a^2- x^2 \right )^{1\over 3} $$
Relevant Equations
actually, my algebra appears insufficient :frown:
Book answer is ##\qquad a≥0\qquad x={ 7\over 9}\;a\ \ \lor\ \ x={ 13\over 14}\;a\ \ ##but I fail to see how to get there !

Stunned by an 1886 dutch high school exam exercise. Hats off for the 17 year olds that did it !

##\ ##
 
Physics news on Phys.org
Divide by the right hand side.
 
  • Like
  • Love
Likes   Reactions: chwala, WWGD, SammyS and 2 others
Frabjous said:
Divide by the right hand side.
I don't get it. The right side does not divide at all nicely into the left side. Did you overlook the exponents inside the parens or am I missing something?
 
  • Like
Likes   Reactions: WWGD
BvU said:
Homework Statement: Solve ##x## from $$\left ( a+x\right )^{2\over 3} + 6\left ( a-x\right )^{2\over 3} =5\left ( a^2- x^2 \right )^{1\over 3} $$
Relevant Equations: actually, my algebra appears insufficient :frown:

Book answer is ##\qquad a≥0\qquad x={ 7\over 9}\;a\ \ \lor\ \ x={ 13\over 14}\;a\ \ ##but I fail to see how to get there !

Stunned by an 1886 dutch high school exam exercise. Hats off for the 17 year olds that did it !

##\ ##
I think this should work:

Let ##p = (a+x)^{\frac 13}## and ##q = (a-x)^{\frac 13}##.

The given equation can then be written as ##p^2 + 6q^2 =5pq##.

##p^2 - 5pq + 6q^2 =0##

##(p - 2q)(p - 3q) = 0##

And take it from there.

Edit: Spoiler removed.
 
Last edited:
  • Like
  • Informative
Likes   Reactions: Math100, chwala, tech99 and 8 others
Frabjous said:
Divide by the right hand side.
I should have seen it ... but didn't :cry: : the quadratic equation is mischieviously wrapped up in that kind of exam question.

@phinds : divide by ##(a-x)^{1\over 3} \ (a+x)^{1\over 3}## to get ## y+{6\over y} =5 ##

##\ ##
 
  • Like
  • Informative
Likes   Reactions: chwala, Frabjous and phinds
As soon as I appreciated that $$(a+x)(a-x)=(a^2-x^2)$$ I was home free on this one
 
  • Like
Likes   Reactions: chwala and PhDeezNutz
Worse comes to worse, time is running out on the exam, cube both sides. Only one term will remain to a non-unity power p/q. Leave it alone in one side and raise both sides to the qth power. Hardly elegant, but at least you'll get some credit.
Edit: In this exercise, you first cube both sides, end up with a mixed term; then isolate it on one side, then cube both sides again.
 
  • Like
Likes   Reactions: chwala
WWGD said:
Worse comes to worse, time is running out ...
:smile: It's an exam from 1886
 
  • Haha
  • Like
Likes   Reactions: nuuskur, hutchphd and WWGD
BvU said:
:smile: It's an exam from 1886
It's likely too late for you to get any credit for it now. :smile:
 
  • Haha
  • Like
Likes   Reactions: chwala, PhDeezNutz, berkeman and 3 others
  • #10
BvU said:
:smile: It's an exam from 1886
But it was an _open_ exam. ;).
 
Last edited:
  • Haha
Likes   Reactions: hutchphd
  • #11
WWGD said:
Worse comes to worse, time is running out

hourglass-1.jpeg
 
  • Like
Likes   Reactions: WWGD
  • #12
BvU said:
Homework Statement: Solve ##x## from $$\left ( a+x\right )^{2\over 3} + 6\left ( a-x\right )^{2\over 3} =5\left ( a^2- x^2 \right )^{1\over 3} $$
Relevant Equations: actually, my algebra appears insufficient :frown:

Book answer is ##\qquad a≥0\qquad x={ 7\over 9}\;a\ \ \lor\ \ x={ 13\over 14}\;a\ \ ##but I fail to see how to get there !

Stunned by an 1886 dutch high school exam exercise. Hats off for the 17 year olds that did it !

##\ ##
There you see how much the level of high-school math has declined nowadays! SCNR.
 
  • Like
  • Care
Likes   Reactions: malawi_glenn, dextercioby and MatinSAR
  • #14
I don't know, whether it's about IQ. It's rather about quality of high-school education. A colleague just told me in his last problem session a 4th semester (sic!) physics student was utmost lost at the task to do an integral by partial integration.
 
  • Wow
Likes   Reactions: malawi_glenn
  • #15
vanhees71 said:
I don't know, whether it's about IQ. It's rather about quality of high-school education. A colleague just told me in his last problem session a 4th semester (sic!) physics student was utmost lost at the task to do an integral by partial integration.
What is partial integration? You mean like this? $$\int \mathrm{f}(x,y,z) \partial{}x$$
or this
$$\int u\, dv=u\, v-\int v\, du$$
maybe your friend should work on his communication skills. The student probably did not know what he was on about. What is forth semester physics these days? Is that still incline planes or maybe finite square wells?
 
  • #16
The first expression is nonsensical. Of course I mean the second.
 
  • #17
vanhees71 said:
The first expression is nonsensical. Of course I mean the second.
It may be worth noting that the term ‘partial integration’ has two (that I know of) different meanings:

1) It is an alternative (though not widely used) name for ‘integration by parts’.

2) It is a term (informally?) used in multivariate calculus for integration with respect to a single variable. For example in https://www.cliffsnotes.com/study-guides/differential-equations/review-and-introduction/partial-integration the author writes ##f(x,y) = \int M(x,y)∂x## (which is consistent with @lurflurf's 1st example in Post #15). Though I don't know if this notational use of ##∂x## is widely accepted.
 
  • Like
Likes   Reactions: lurflurf
  • #18
lurflurf said:
What is partial integration? You mean like this? $$\int \mathrm{f}(x,y,z) \partial{}x$$
or this
$$\int u\, dv=u\, v-\int v\, du$$
maybe your friend should work on his communication skills. The student probably did not know what he was on about. What is forth semester physics these days? Is that still incline planes or maybe finite square wells?
I thought partial integration and integration by parts mean two different things...correct me if i am wrong...i think partial implies to for e.g decomposing

##\dfrac{ax+c}{ax^2+bx+c}## into ##\dfrac{A}{(ax+b)} +\dfrac{B}{(cx+d)} ## where ##x## is a given variable and the rest are constants.

...then applying integration accordingly.
 
  • #19
BvU said:
Homework Statement: Solve ##x## from $$\left ( a+x\right )^{2\over 3} + 6\left ( a-x\right )^{2\over 3} =5\left ( a^2- x^2 \right )^{1\over 3} $$
Relevant Equations: actually, my algebra appears insufficient :frown:

Book answer is ##\qquad a≥0\qquad x={ 7\over 9}\;a\ \ \lor\ \ x={ 13\over 14}\;a\ \ ##but I fail to see how to get there !

Stunned by an 1886 dutch high school exam exercise. Hats off for the 17 year olds that did it !

##\ ##
It would be interesting if i can get a different approach to this problem...i will check it out. I guess Binomial Theorem could apply though tedious.

Ok i am thinking along the lines of:

##\dfrac{(a+x)^\frac{2}{3}}{(a+x)^\frac{1}{3}}= 5(a-x)^\frac{1}{3} - 6(a-x)^\frac{2}{3}####(a+x)^\frac{1}{3}=5(a-x)^\frac{1}{3} - 6(a-x)^\frac{2}{3}####\dfrac {(a-x)^\frac{1}{3}[5-6(a-x)^\frac{1}{3}] }{(a+x)^\frac{1}{3}}=1##

Let

##a-x=k##
##a+x=m##

Then using the above... we shall get:

##6k^\frac{2}{3}-5k^\frac{1}{3}+1=0##

and

##m^\frac{1}{3}=1##

Let

##n=k^\frac{1}{3}##

then we shall have:

##6n^2-5n+1=0##

##n_1=0.5 ⇒k_1=0.125##

##n_2=0.333⇒k_2=0.037##

We know that

##m=1##

using, ##k=0.125## we shall have,

##a-x=0.125##
##a+x=1##

solving the simultaneous equation yields,

##-2x=-0.875##

##x=0.4375##

##⇒a=0.5625##
 
Last edited:
  • #20
I hope I am not too late, but I have found the answers you put for ##x## but not sure why ##a## should be greater or less than zero, as you say in your first post (#1 up).

I hope this is readable.

1686207347170.png


Can anyone tell me please why should ##a\ge 0##? And if am mistaken in my work up there 👆?
 
  • #21
What do you get if ##a = -1 ## ?
check

And high school curriculum didn't include complex numbers

##\ ##
 
  • #22
chwala said:
It would be interesting if i can get a different approach to this problem...i will check it out. I guess Binomial Theorem could apply though tedious.

Ok i am thinking along the lines of:

##\dfrac{(a+x)^\frac{2}{3}}{(a+x)^\frac{1}{3}}= 5(a-x)^\frac{1}{3} - 6(a-x)^\frac{2}{3}##
It looks like you intended to divide both sides buy ##(a+x)^\frac{1}{3}## but you neglected dividing ##5(a-x)^\frac{1}{3}## by ##(a+x)^\frac{1}{3}## .
 
  • #23
SammyS said:
It looks like you intended to divide both sides buy ##(a+x)^\frac{1}{3}## but you neglected dividing ##5(a-x)^\frac{1}{3}## by ##(a+x)^\frac{1}{3}## .
...I will check this again...
 
  • #24
This
chwala said:
It would be interesting if i can get a different approach to this problem...i will check it out. I guess Binomial Theorem could apply though tedious.

Ok i am thinking along the lines of:

##\dfrac{(a+x)^\frac{2}{3}}{(a+x)^\frac{1}{3}}= 5(a-x)^\frac{1}{3} - 6(a-x)^\frac{2}{3}####(a+x)^\frac{1}{3}=5(a-x)^\frac{1}{3} - 6(a-x)^\frac{2}{3}####\dfrac {(a-x)^\frac{1}{3}[5-6(a-x)^\frac{1}{3}] }{(a+x)^\frac{1}{3}}=1##

Let

##a-x=k##
##a+x=m##

Then using the above... we shall get:

##6k^\frac{2}{3}-5k^\frac{1}{3}+1=0##

and

##m^\frac{1}{3}=1##

Let

##n=k^\frac{1}{3}##

then we shall have:

##6n^2-5n+1=0##

##n_1=0.5 ⇒k_1=0.125##

##n_2=0.333⇒k_2=0.037##

We know that

##m=1##

using, ##k=0.125## we shall have,

##a-x=0.125##
##a+x=1##

solving the simultaneous equation yields,

##-2x=-0.875##

##x=0.4375##

##⇒a=0.5625##

This may be unorthodox approach but hey let us do it!

We have,

##(a+x)^{\frac{2}{3}} + 6 (a-x)^{\frac{2}{3}}=5(a^2-x^2)^{\frac{1}{3}}##

I will still let

##m=a+x##

and

##k=a-x##

then,

##m^{\frac{2}{3}} + 6k^{\frac{2}{3}}=5m^{\frac{1}{3}}k^{\frac{1}{3}}##

##6k^{\frac{2}{3}}=m^{\frac{1}{3}}[5k^{\frac{1}{3}}-m^{\frac{1}{3}}]##

Let

##m^{\frac{1}{3}}=1##

then,

##6k^{\frac{2}{3}}-5k^{\frac{1}{3}}+1=0##

...

the other steps to solution shall remain as shown on the quoted post.

cheers!
 
  • #25
chwala said:
ThisThis may be unorthodox approach but hey let us do it!

We have,

##(a+x)^{\frac{2}{3}} + 6 (a-x)^{\frac{2}{3}}=5(a^2-x^2)^{\frac{1}{3}}##

I will still let

##m=a+x##

and

##k=a-x##

then,

##m^{\frac{2}{3}} + 6k^{\frac{2}{3}}=5m^{\frac{1}{3}}k^{\frac{1}{3}}##

##6k^{\frac{2}{3}}=m^{\frac{1}{3}}[5k^{\frac{1}{3}}-m^{\frac{1}{3}}]##

Let

##m^{\frac{1}{3}}=1##

then,

##6k^{\frac{2}{3}}-5k^{\frac{1}{3}}+1=0##

...

the other steps to solution shall remain as shown on the quoted post.

cheers!
Why define m1/3=1?
 
  • #26
Frabjous said:
Why define m1/3=1?
If you look at the solution, one variable, that is ##x## is dependent on the other variable ##a##...I can therefore choose to let my variable be equal to a certain value. The intention being to find any possible means to solve the equation (in my case using quadratic method).

Or is my thinking not correct?
 
  • #27
lurflurf said:
What is partial integration?
Based on @vanhees71's subsequent response, he evidently meant "integration by parts." It's possible that he conflated the names of the techniques of integration by parts and integration by partial fraction decomposition.
 
  • Like
Likes   Reactions: chwala
  • #28
chwala said:
If you look at the solution, one variable, that is ##x## is dependent on the other variable ##a##...I can therefore choose to let my variable be equal to a certain value. The intention being to find any possible means to solve the equation (in my case using quadratic method).

Or is my thinking not correct?
a is a constant and you were asked to solve for x(a).

You’ve added an equation, so you are solving for an intersection.
 
Last edited:
  • Like
Likes   Reactions: SammyS
  • #29
Frabjous said:
a is a constant and you were asked to solve for x(a).

You’ve added an equation, so you are solving for an intersection.
@Frabjous that is true, I added an equation which led me to the final solution in terms of ##a## and ##x##. Check my post ##19## that has the continuation after i came up with the quadratic equation.
 
  • #30
chwala said:
@Frabjous that is true, I added an equation which led me to the final solution. Check my post ##19## that has the continuation after i came up with the quadratic equation.
So what? You get one value of x for one value of a. The OP has the solution which has TWO values of x for a given value of a. The OP also has the solution for other values of a. You are missing a lot of solutions.
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
Replies
2
Views
3K
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
773
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 61 ·
3
Replies
61
Views
12K